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A uniform formalism is introduced for the description and comparison of the algorithms of Sano and Sawada
@M. Sano and Y. Sawada, Phys. Rev. Lett.55, 1082 ~1985!# and Eckmannet al. @J.-P. Eckmann, S. O.
Kamphorst, D. Ruelle, and S. Cilibert, Phys. Rev. A34, 4971 ~1986!#, for the calculation of the Lyapunov
spectrum from experimental data. It is shown that both algorithms coincide for the calculation of the maximum
Lyapunov exponent and differ for the other exponents. A numerical application is carried out which confirms
the above result. A detailed investigation of the dependence of the Sano and Sawada and the Eckmannet al.
algorithms on the parameters of the algorithms, the signal and the reconstruction of the attractor, for the
calculation of the whole Lyapunov spectrum is presented. Calculations are performed for three kinds of
signals: ~a! the noise-free dynamical variablex(t) of the Lorenz system,~b! the stiff and long duration time
evolution of the total current of the electrochemical oscillator Fe–2M H2SO4 in the presence of external
Ohmic resistanceR, and~c! the smooth variation and short duration signal of the same experimental system for
a different set of parameters. A comparison between the results of the two algorithms is attempted as well as
an investigation of the trends of the Lyapunov spectrum by varying the algorithm, signal, and reconstruction
parameters.

PACS number~s!: 02.70.2c, 02.60.2x, 05.45.1b

I. INTRODUCTION

An intrinsic property of a large class of relatively low
dimensional nonlinear dissipative dynamical systems is the
existence of the strange or chaotic attractor in the phase
space. The dynamical behavior of such physical systems is
studied experimentally by recording an observable function
g(t),

g~ t !5G„x~ t !…, ~1!

wherex(t) is the vector of the dynamical variables of the
system,G:Rd→R is assumed to be a differentiable function
andd is the dimension of the system. The observableg(t) is
usually sampled at fixed time intervalsDt sec andDt21

sec21 denotes the sampling rate of an analog to digital~AD!
converter. Therefore, the observable is recorded as a se-
quence of data points,

$g1 ,g2 ,...,gNmax%, ~2!

sampled at equal time intervals. In~2! Nmax denotes the total
number of data points whereasNmaxDt5T sec is the total
sampling time of the observable. The attractor of the dy-
namical system can be reconstructed from the sequence~2!
by using the method of time delay@1#.

The chaotic attractor has three main features which dis-
tinguish it from any other kind of attractors:~a! nonperiod-
icity, ~b! fractal dimension, and~c! sensitive dependence on
the initial conditions~exponential divergence of nearby or-
bits! @2#.

The quantity which characterizes the aperiodicity of the
time evolution of a dynamical system is the power spectrum,

S~v!5 lim
T→`

1

T U E
0

T

g~s!e2 ivsdsU2, ~3!

wherev is the angular frequency anduu denotes the modulus
of a complex number. The power spectrumS~v! can be cal-
culated efficiently by the usual fast Fourier transform~FFT!
algorithm@3#. If the time evolution of a dynamical variable is
a quasiperiodic functionx(t)5h(v1t,v2t,...,vkt) then the
observableg(t) will also be a quasiperiodic function of the
same set of frequenciesvi . In this case, the power spectrum
will consist of discrete peaks corresponding to the frequen-
cies v̂ i5( j51

k a i jv j . Actually, in experimental situations
only the casek52 ~or rarelyk53! is observed. In contrast,
the power spectrum of a chaotic motion will consist of a
continuous band due to the aperiodicity of the signal and in
principle the quasiperiodic and the chaotic evolution can be
distinguished from the power spectrum@4,5#. Nevertheless,
the continuous spectrum is easily confused with the power
spectrum of an experimental quasiperiodic signal when noise
is present. Therefore the aperiodicity can be used only as a
gross criterion for the characterization of a chaotic attractor.

The chaotic attractor is characterized not only by the ape-
riodicity but also from the fact that often is a fractal object.
There are several dimensions which give a measure of the
fractal character of a chaotic attractor. The most robust quan-
tity calculated directly from the reconstructed attractor is the
correlation dimension

Dc5 lim
r→0

C~r !

logr
, ~4!

whereC(r ) is a function which counts points of the attractor
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having a distance less thanr . The correlation dimensionDc
is expected to have a noninteger value if the attractor is a
fractal set@6#.

Although the correlation dimensionDc can be calculated
directly from the experimental sequence~2!, the procedure
suffers from several drawbacks. First, the calculations are
very time consuming even though several improvements
have been done toward this direction and are already pre-
sented in the literature. Second, the procedure calculates a
single scalar which often lies very close to an integer value
and is influenced by the finite amount and precision of ex-
perimental data. This uncertainty of the results make the pos-
sible fractal character of the chaotic attractor a poor criterion
for the characterization of a large class of experimental sig-
nals.

The strongest indication of the existence of chaos is the
sensitive dependence on the initial conditions; solutions
starting from two points in the phase space separated only
infinitesimally are expected to diverge exponentially in time.
The sensitive dependence on initial conditions can be con-
sidered as the fingerprint of chaos and regarded as an abso-
lute criterion for the distinction of the chaotic motion from
any other kind of time evolution. The quantity which ex-
presses the rate of divergence of nearby orbits of a
d-dimensional dynamical system and therefore the sensitiv-
ity on initial conditions is the Lyapunov exponentsli ,
i51,2,...,d @4#.

The Lyapunov exponents can be used not only for the
characterization of a chaotic attractor, obtained numerically
or experimentally but also for the calculation of several other
quantities. Thus if all positive Lyapunov exponents are
known, the metric entropy of the system can be calculated
@7#,

h~r!5E (
l i.0

l i~x!mi~x!r~dx!, ~5!

where r is a physical measure on the attractorli(x) the
positive Lyapunov exponents, andmi(x) their multiplicity. In
the case of an ergodic system the Lyapunov exponents are
independent of the position in the phase space. If addition-
ally their multiplicity is one, then Eq.~5! takes the form,

h~r!5 (
l i.0

l i . ~6!

The metric entropyh~r! gives a measure of the mean rate of
creation of information of the system due to the sensitive
dependence on initial conditions@4,5#.

Another quantity which is directly calculated when the
whole spectrum is known, is the Lyapunov or Kaplan-Yorke
dimension@8#,

DL5k1
( j51
k l j

ulk11u
, ~7!

wherek5max$i :l11•••1l i.0%. The Lyapunov dimension

can be considered as a measure of the region of the attractor
of high density where most trajectories spend most of the
time. The Lyapunov dimension can be considered also as an
approximation of the capacity of the attractor even though its
value is often smaller than the later.

Finally, in certain cases, the Hausdorff dimension can also
be calculated if the Lyapunov spectrum is known@9#,

DH5h~r!S 1l1
1

1

ul2u
D , l1.0.l2 , ~8!

whereh~r! is the metric entropy of the system. Equation~8!
holds for a diffeomorphismf :M2→M2, that is, for an invert-
ible and differentiable map of a two dimensional manifold
@9#.

It can be seen from the above that not only the largest
positive exponent but the whole spectrum is important when
we are interested in the characterization of a complex signal
as well as for the calculation of quantities which express
several properties of the attractor.

The three algorithms which are used more often for the
calculation of the Lyapunov exponents from the experimen-
tal data are the algorithms of Wolfet al. @10#, Eckmannet al.
@11#, and Sano and Sawada@12#. The algorithm of Wolf
et al.and similar modifications@13# calculate only the largest
exponent, which is positive in the case of a chaotic signal.
The calculation of only the positive exponent can cause some
difficulties when other criteria for the proper choice of the
algorithm parameters are needed. Usually these are the exist-
ence of a zero exponent@14# and a negative summation of
the exponents. Neither of the above criteria can be used
when the Wolfet al. algorithm is implemented. Therefore it
is difficult to know if the choice of the algorithm parameters,
the propagation time, the minimum distance of the neighbor-
ing vector and the conservation of the orientation are chosen
properly. Additionally, the calculation of any other quantity
like the entropy, Lyapunov and information dimension is not
possible because the Lyapunov spectrum remains undeter-
mined when the Wolfet al. algorithm is implemented.

The Eckmannet al. as well as the Sano and Sawada al-
gorithms seem to be the most promising algorithms for the
calculation of the Lyapunov spectrum from experimental
data. Both algorithms are based on the same key idea: the
time evolution of a small sphere defined by the neighboring
points of a reference vector of the attractor and the approxi-
mate calculation of the tangent matrix propagating small per-
turbations on the reconstructed attractor’s trajectory. The al-
gorithms are easy on the implementation and are based on
rather common numerical techniques. Additionally, the pa-
rameters of the algorithms are actually only two, the evolu-
tion time and the radius of the small sphere. Their proper
choice can be tested by seeking always for a zero exponent,
a negative divergence of the vector field~negative summa-
tion of the Lyapunov exponents!, and a plateau region at
which the calculated values are independent of the choice of
the parameters. Finally, the algorithms converge rather fast,
especially when the calculations are performed in a super-
computing environment.

The above mentioned advantages of the Sano and Sawada
and the Eckmannet al. algorithm is the reason that they are
already used by experimentalists in order to characterize
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complex signals. The great interest in these algorithms can
be also viewed by the large number of improvements of
these two algorithms which are presented in the literature
@15–22#. Even though the algorithms are already used as
tools for the characterization of the dynamical behavior and
improvements are also proposed, the original algorithms are
not yet investigated thoroughly as a function of their param-
eters and the features of the experimental signals. Some work
was presented concerning the effect of noise on the
Lyapunov spectrum when the Sano and Sawada algorithm
@23# and the Eckmannet al. algorithm @11# are used. It is
obvious though, that a detailed investigation of the effect of
the various parameters for a variety of signals must be per-
formed before any attempt for improvement of these two
algorithms is made. In the present work we implement the
two algorithms for a variety of experimental signals with
different features and study the trends of the algorithms by
varying the parameters of the algorithms. It is shown that the
features of the experimental signal is of a great importance
for the proper choice of the parameters and in any case they
must be chosen thoughtfully and after detailed verification.

In this point we must notice that there is also a different
approach for the determination of the Lyapunov exponents
from the time series. The procedure is based on the construc-
tion of the model equations which reproduce the dynamical
behavior and the calculation of the Lyapunov exponents
from the resulting equations by using already known algo-
rithms@24#. This procedure will not concern us in the present
work.

The purpose of this study is twofold. First, the two algo-
rithms are compared at the formal level in order to reveal
their similarities and differences. A special emphasis is paid
to express both algorithms in the same mathematical form
and elucidated their resemblance through the properties of
the mathematical manipulations calculating the Lyapunov
spectrum. Second, a detailed study of the role of the algo-
rithm as well as of the signal and reconstruction parameters
is attempted in order to explore the trends of the Lyapunov
spectrum by varying the parameter values. The effect of the
various parameters is examined for three kind of signals with
different characteristics. The first system is a noise-free time
series obtained numerically by integrating the Lorenz equa-
tions,

ẋ52s~x2y!

,

ẏ5~g2z!x2y
,

ż5xy2bz, ~9!

for s516, b54, g545.92. The integration of the Lorenz
equations was performed by a 4th order Runge-Kutta algo-
rithm with integration step 0.01 and a single precision. The
variation of thex(t) variable was used for the determination
of the Lyapunov exponents@Fig. 1~a!#.

The second signal is obtained experimentally from the
electrochemical oscillator Fe–2M H2SO4 in the presence of
an external ohmic resistanceR. The experimental apparatus
is described elsewhere@25#. The sampling of the experimen-

tal data was carried out by an AD converter for the values of
the Ohmic resistanceR520 V and the applied potential
E5120 mV. The sampling rate used was 700 sec21 and
120 000 data points were recorded. The mean amplitude of
the oscillations is about 15 mA whereas the peak-to-peak
time interval varies from 0.05 sec to 0.25 sec@Fig. 1~b!#.
This signal can be considered as an extreme case due to its
stiffness and small peak-to-peak time interval. We designate
this signal as Signal 1 throughout this paper.

The third signal is obtained again experimentally from the
electrochemical oscillator Fe–2M H2SO4 in the presence of
the external resistanceR. This time the sampling rate used
was 290 sec21 and 10 000 data points were recorded. The
value of the ohmic resistance wasR518 V and the applied
potential wasE50 mV. The mean amplitude of the oscilla-
tions is about 15 mA whereas the peak-to-peak time interval
varies from 0.5 sec to 1.5 sec@Fig. 1~c!#. We designate this
signal as Signal 2 throughout this paper.

The paper is organized as follows: In Sec. II we present
some formal aspects of the definition of the Lyapunov expo-
nents. In Sec. III the Sano and Sawada and the Eckmann
et al.algorithms are presented to some extent and a compari-

FIG. 1. The three signals used for the calculation of the
Lyapunov spectrum.~a! Thex(t) variable of the Lorenz system for
s516, b54, g545.92; ~b! the experimental signal of the system
Fe–2M H2SO4 for R520V, E5120 mV ~Signal 1!, and ~c! the
experimental signal of the system Fe–2M H2SO4 for R518 V,
E50 mV ~Signal 2!. Only the first 4000 points are presented.
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son of the two algorithms is attempted. The effect of the
algorithm parameters on the Lyapunov spectrum is investi-
gated in Sec. IV. In Sec. V the effect of the time series
characteristics is studied. Finally, the effect of the recon-
struction parameters of the attractor is presented in Sec. VI.
The results are discussed in Sec. VII.

All the calculations were performed in a VAX 9000 main
frame computer of the Aristotle University of Thessaloniki,
running under VMS 5.5. The codes of both algorithms were
written in FORTRAN.

II. DEFINITION OF THE LYAPUNOV EXPONENTS

Before proceeding to a brief description of the Sano and
Sawada and the Eckmannet al. algorithms it is necessary to
define the Lyapunov exponents of a continuous dynamical
system which can be described by a set of nonlinear ordinary
differential equations,

ẋ5f~x,m!, xPRd. ~10!

In Eq. ~10!, x(t) is the vector of the dynamical variables
andm the vector of parameters. The variational equations of
Eq. ~10! will be,

j̇5Df„x~ t !…j. ~11!

wherej denotes a small perturbation at the orbit pointx(t),
Df„x(t)… is the d3d matrix with elements
@]f i„x(t)…#/]xj , i , j51,2,...,d.

The solution of the variational equations in the region of
continuity ofDf„x(t)… @26# can be written as,

j~ t !5A~ t,0!j~0!, ~12!

where the propagatorA~t,0! satisfies the differential equa-
tion,

Ȧ~ t !5Df„x~ t !…A~ t !, ~13!

and the initial conditionA~0,0!5I , whereI is the unit matrix.
For discrete time, i.e., by splitting the interval@0,t# in k

discrete time regions, Eq.~12! can be written in the follow-
ing form,

j5AkAk21•••A2A1j0 . ~14!

By inspecting Eq.~14!, we observe that the matrixA can be
also written as the matrix product,

A5AkAk21 ...A2A1 . ~15!

The Lyapunov exponents of the system at the orbit point
x(t) are associated with the logarithms of the eigenvalues of
the symmetric matrix,

lim
t→`

$@A~ t !TA~ t !#1/2%5L. ~16!

The eigenvalues ofL will have the formel j t for t→` and
A(t)T is the transposed ofA(t) @27#. Let uej & be the right
eigenvector corresponding to the eigenvalueel j t. Then, by
definition ~dropping the dependence ont for simplicity!,

ATAuej&5e2l j tuej&. ~17!

By multiplying both sides of Eq.~17! with the left eigenvec-
tor ^ej u, ~assuminĝei uej &5di j !,

^ej uATAuej&5e2l j t. ~18!

But,

^ej uATAuej&5iAuej&i2. ~19!

By combining Eqs.~18! and ~19! we obtain,

iAuej&i5el j t. ~20!

Generally, letE(1).E(2).•••.E(d) be subspaces ofRd @4#.
Then, the Lyapunov exponents are given by,

l j5 lim
t→`

1

t
lniA~ t !ej i , j51,2,...,d ~21!

where,ejPE( j )2E( j11), andi i denotes any norm@2,4#.
If em j t is an eigenvalue~mj complex in general! of the real

matrix A(t) and uf j & the corresponding eigenvector, then,

Auf j&5em j tuf j&, ~22!

and by definition,

^f j uATAuf j&5iAuf j&i2. ~23!

But,

^f j uATAuf j&5em j tem̄ j t, ~24!

where m̄ j indicates the complex conjugate ofmj . By com-
bining Eqs.~23! and ~24! we obtain

iAuf j&i5eRe~m j !t. ~25!

By comparing Eqs.~20! and~25! we see that the real part
of the eigenvalues of the matrixA(t) are expected to coin-
cide with the eigenvalues of the symmetric matrix~ATA!1/2,
which are always real because this matrix is Hermitian@for a
full discussion about the similarities of the eigenvalues and
eigenvectors of the matricesA(t) and ~ATA!1/2 see @28##.
From the above, we notice that if the operatorA(t) is known,
the Lyapunov spectrum can be calculated either by the ei-
genvalues of the matrixL, Eq. ~16!, or by Eq.~21!.

The variational equations Eq.~11! as well as their solution
Eq. ~12! or Eq. ~14! express the stability of the system Eq.
~10! under infinitesimal perturbationsj at the orbit point
x(t). Thus, the Lyapunov exponents can be considered as the
rate of convergence or divergence of nearby orbits separated
by a small perturbationj.

III. DESCRIPTION AND COMPARISON OF THE SANO
AND SAWADA AND ECKMANN et al.ALGORITHMS

From Sec. II we observe that the Lyapunov exponents can
be calculated only if the operatorDf„x(t)… or A(t) is known.
If the set of ordinary differential equations describing the
dynamical system is known then the calculation can be per-
formed directly since the matrixDf„x(t)… is directly calcu-
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lable. On the other hand, when an experiment is performed
we actually record only an observable function Eq.~1! or
else the sequence~2!. It is obvious that in this case the op-
eratorDf„x(t)… is not directly calculable and thus an approxi-
mation process must be introduced.

Both the Sano and Sawada and the Eckmannet al. algo-
rithms are based on the least-squares approximation of the
operatorA(t) in them-dimensional embedding space. Thus,
in order to calculate the Lyapunov spectrum of a
d-dimensional system when only the sequence~2! is known,
a reconstruction of the attractor must be performed first,

gl 5~gl ,gl 1t ,gl 12t ,...,gl 1~m21!t!
T, ~26!

where l 51,2,...,Nmax2m11 andm>2d11 is the embed-
ding dimension,tDt sec is the time delaytPN* .

On the reconstructed attractor Eq.~26!, we choose a ref-
erencem vectorgi and formN smallm vectorsyi lying in a
m-dimensional hypersphere of radius« around the reference
vectorgi ,

yj5$~gi2gj !,igi2gj i<e%, j51,2,...,N ~27!

where i i indicates the Euclidean norm. If the radiuse is
chosen to be small, them vectorsyj can be considered as
small perturbations at the orbit pointgi . Equation~27! indi-
cates that the smallm vectors yi can be constructed by
searching for vectorsgj laying in a distance<« from the
reference pointgi and formingyj as the vector,gi2gj ~Fig.
2!.

After a fixed time interval equal to the propagation time
tp5nDt sec, the smallm vectorsyj will be evolved to them
vectorszj ,

zj5$~gi1n2gj1n!,igi2gj i<e%, j51,2,...,N. ~28!

It can be assumed that the vectorszj are generated from
the small vectorsyj by Eq. ~14!,

zj5A iyj , ~29!

where them3m matrix A i is the approximation of the op-
eratorA~t,0! at the orbit pointgi . The matrixA i can be
determined numerically by solving the minimization prob-
lem,

min
Ai

S5min
Ai

1

N (
j51

N

izj2A iyj i2. ~30!

The minimization problem Eq.~30! can be solved by uti-
lizing a linear-least-squares procedure either by solving the
normal equations~e.g., by Gauss elimination! or by applying
Householder transformations@3#.

Up to this point both algorithms follow the above proce-
dure in order to determine the operatorA i . The Sano and
Sawada algorithm proceeds as follows:

~a! Operation ofA i on an orthonormal set of vectors
$e j

( i )%, j51,2,...,m.
~b! Production of a new set$e j

( i1n)% by orthonormalizing
the vectors$A ie j

( i )%.
~c! Calculation of the Lyapunov spectrum from an equa-

tion analogous to Eq.~21!,

l j5
1

ktp
(
i51

k

logiA iej
~ i !i ~31!

and propagation to the next pointgi1n ~vector after propaga-
tion time tp5nDt!.

The procedure is expected to converge to the Lyapunov
spectrum for k→` because the orthonormal set$e j

( i )%
defines subspacesE(1)5span$ej

( i ) ,ej11
( i ) ,...,ej1n

( i ) %, E(2)

5span$ej11
( i ) ,ej12

( i ) ,...,ej1n
( i ) %,..., E(m)5span$ej1n

( i ) %.
The Eckmannet al. algorithm also approximates the op-

eratorA i by Eq.~30!. In order to calculate the eigenvalues of
the matrixL @Eq. ~16!# proceeds by the following steps:

~a! Factorization of the matrixA iQi21 by utilizing theQR
decomposition technique@3,29#,

A iQi215QiRi , i51,2,...,k ~32!

whereQi is an orthogonal matrix,Ri is an upper triangular
matrix, andQo5I . The decomposition, Eq.~32! is unique as
far as the matrixA iQi21 is invertible. The decomposition
can be utilized, in principle, either by using the Gramm-
Schmidt orthonormalization procedure or the Householder
transformations@3,29#. The operatorA5AkAk21•••A2A1 is
expected to converge to the upper triangular matrix,

A5RkRk21Rk22•••R2R1 , k→`. ~33!

~b! Calculation of the Lyapunov spectrum from the diag-
onal elements ofRi , ~eigenvalues ofA!, i.e.,

l j5
1

ktp
(
i51

k

logRi
~ j , j ! ~34!

and propagation to the next vectorgi1n , ~vector after propa-
gation timetp5nDt!.

From the description of the procedure followed by both
algorithms we observe that the calculated values of the

FIG. 2. The construction of the small perturbation vectorsyj ~in
the three dimensional space for the sake of visualization!. The vec-
tor gi denotes the reference vector of the orbitwt„G~x!…. The vector
gj denotes thej th neighbor lying in a sphere of radiuse.
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Lyapunov exponents strongly depend on six parameters. The
construction of the smallm vectorsyi depends on the choice
of the radiuse which expresses the neighborhood of the ref-
erence orbit pointgi . The calculation of the values of the
Lyapunov exponents depends also on the choice of the
propagation timetp5nDt, which expresses the time interval
in which the divergence or convergence of nearby orbits is
studied. We call the radiuse and the propagation timetp the
algorithm parameters.

Additionally, the calculated Lyapunov spectrum depends
on two parameters concerning the recorded signal. These pa-
rameters are the total number of data pointsNmax and the
sampling rateDt21. These two parameters are denoted as the
signal parameters.

Finally, the Lyapunov exponents are calculated in a suit-
able reconstructed space and thus the calculated values de-
pend on the choice of the embedding dimensionm and the
time delayt which are denoted as the reconstruction param-
eters.

In order to investigate the similarities and differences of
the two algorithms, let us describe the Sano and Sawada
algorithm by using a notation similar to the notation used by
Eckmannet al.

Let e1
~0!5~1,0,...,0!T, e2

~0!5~0,1,...,0!T,...,em
(0)5(0,0,...,1)T

be an initially chosen orthonormal set of vectors. Denote by
Qo the matrix having as columns the vectorsei

(0),

Qo5@e1
~0! ,e2

~0! ,...,em
~0!#5I , ~35!

whereI is the unit matrix. Let us denote byU1, the operation
of the operatorA1 to every element of the set$e j

(0)%,

A1Qo5U1[@u1
~1! ,u2

~1! ,...,um
~1!#. ~36!

Now, consider a new orthonormal set of vectors$e j
(1)% which

are column vectors of a new orthogonal matrixQ1, produced
by the orthonormalization of the vectorsu i

(1)[coli~U1!,

Q15@e1
~1! ,e2

~1! ,...,em
~1!#, ~37!

and form the productA2Q1. By applying the above proce-
durek times we obtain,

AkQk215Uk[@u1
~k! ,u2

~k! ,...,um
~k!#. ~38!

For k→` the Lyapunov spectrum will be given by,

l j5
1

ktp
(
i51

k

logiuj
~ i !i ~39!

becauseu j
( i )PE( j )2E( j11) ~subspaces are defined as in Sec.

III B !. It is obvious that Eq.~39! is equivalent to Eq.~31!.
In a similar notation, the Eckmannet al. algorithm starts

the calculations by choosing a matrix~the unit matrix!,

Qo5I , ~40!

and calculating the decomposition,

A1Qo5Q1R1[U1 , ~41!

whereR1 is an upper triangular matrix andQ1 is an orthogo-
nal matrix obtained by the orthonormalization of coli~A1Qo)
[u i

(1) ~or similarly by the Householder transformation of the
matrix A1Q0!. By applying the above procedurek times we
obtain,

AkQk215QkRk[Uk , ~42!

whereRk is an upper triangular matrix andQk is an orthogo-
nal matrix obtained by the orthonormalization of
coli~AkQk21!. But the matrixA will be given by the product
of Eq. ~15!. By replacing the matricesA i , i51,2,...,k, in Eq.
~15! we obtain,

A5QkRkRk21•••R2R1 , ~43!

where fork→`,Qk→I @29#. The product of upper triangular
matrices is an upper triangular matrix and the determinant of
an upper triangular matrix equals to the product of its diag-
onal elements. Therefore, the eigenvalues ofA will be the
diagonal elements of the product~43! for k→`. Thus, the
Lyapunov exponents are given by,

l j5
1

ktp
log )

i51

k

Ri
~ j , j ! , ~44!

or by Eq. ~34! for computational reasons, under the restric-
tion that the real part of the eigenvalues ofA coincide with
the eigenvalues of~ATA!1/2 @28#.

By inspecting Eqs.~38! and~42!, for k5 i we notice that,

Ui5QiRi , ~45!

that is, the matrixUi is transformed to the upper triangular
matrix Ri via an orthogonal transformation. But orthogonal
transformations preserve norms and thus we expect,

iuj
~ i !i5icolj~Ri !i , j51,2,...,m. ~46!

Let us compare the column vectors ofUi andRi one by one,

iu1
~ i !i5icol1~Ri !i[Ri

~1,1! , ~47!

and,

iuj
~ i !i5icolj~Ri !iÞRi

~ j , j ! , j.2. ~48!

Equation~47! indicates that we should expect both algo-
rithms to give identical results of the largest Lyapunov ex-
ponentl1, because the Sano and Sawada algorithm calcu-
latesl1 by summing the logarithms ofiu 1

( j )i, j51,2,...,k
and the Eckmannet al.algorithm by summing the logarithms
of the matrix elementsRi

(1,1). As far as it concerns the rest of
the spectrum, we expect a mismatch. The Sano and Sawada
algorithm calculateslj as the summation of the logarithms of
iu i

( j )i, j.2 and the Eckmannet al.algorithm by the summa-
tion of the logarithms of the matrix elementsRi

( j j ). Equation
~48! indicates that these two quantities will be unequal.
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IV. STUDY OF THE ALGORITHM PARAMETERS «, tp

A. The effect of the radius«

In order to form the small vectorsyj of the tangent space
at a given reference point of the embedding space defined by
the vectorgi and study their evolution after a finite propaga-
tion time both Sano and Sawada and Eckmannet al. algo-
rithms search forN neighboring vectorsgj , j51,2,...,N,
within am-dimensional hypersphere of radius«.

In general, the radius« of the m sphere must be small
enough in order for the vectorsyj5gi2gj to be small and the
tangent space approximation to be fulfilled. Of course, while
we are dealing with experimentally obtained time series in-
strumental and system noise as well as noise due to round-
off errors is always present. For this reason« must be greater
than the noise level of the system. The use of an extremely
small « may also cause an incapability to determineN>m
neighboring vectors; if the sphere defined by« is very small
it may be impossible to findN vectors satisfying the condi-
tion, igi2gj i<« @Fig. 3~a!#. At this point, it must be noticed
that the numberN of small vectorsyj must be greater thanm
in order to avoid poor estimation of the least-squares proce-
dure.

However the use of large« will lead to the construction of
neighboring vectors which will not belong to the tangent
space at the orbit pointgi and thus, the hypothesis that the
vectorsyj represent infinitesimal perturbations at this orbit
point will not hold. Additionally, the use of large« will
cause the algorithms to locate all the neighboring vectors on
the same trajectory. Therefore, the vectorsyj will not repre-
sent initial perturbations at the reference pointgi @Fig. 3~b!#.

The terms ‘‘small’’ and ‘‘large’’ are used, though, some-
how ambiguously. Often, it is useful to express the magni-
tude of the radius« as the fraction«/«A , where«A is the
mean or approximate radius of the reconstructed attractor.
Nevertheless, the permitted values of« will depend also on
the embedding dimensionm chosen for the reconstruction of
the attractor. If it is assumed that the attractor is recon-

structed in them-dimensional space, the norm of any vector
will be,

igi i5S (
j50

m21

gi1 j t
2 D 1/2. ~49!

It can be seen from Eq.~49! that the norm of any vector
depends on the embedding dimensionm. Higher embedding
dimensions cause more extensive attractors. Therefore as the
embedding dimension increases the permitted values of« are
increasing, too.

The effect of« can be studied by varying« while keeping
all the other parameters constant~the values of the constant
parameters are shown in Table I!. The effect of« on the
values of the Lyapunov spectrum of the Lorenz signal using
the Sano and Sawada algorithm is shown in Fig. 4~a!. In this
figure we observe that the Sano and Sawada algorithm gives
stable results~i.e., independent of the variation of the param-
eters! for the positivel1 and zero exponentl2, for a large
region of « values, 1<«,8 or 0.02<«/«A,0.16, ~where
«A'50!. In contrast, the negative exponentl3 seems to be
very subjective to the choice of the radius«. Thus, only for

FIG. 3. ~a! The effect of the
choice of the small radius«. No
points are laying in the sphere of
radius «. ~b! The effect of large
radius«. All points are laying on
the same orbit and thus the vectors
yj do not represent the small per-
turbation on the orbit pointgi .

TABLE I. Parameters used for the calculation of the Lyapunov
spectra of the Lorenz signal, Signal 1 and Signal 2. When one of the
parameters was varied all the others were kept constant.~* ! denotes
when the Sano and Sawada algorithm is used.~** ! denotes when
the Eckmannet al. algorithm is used.

Lorenz signal Signal 1 Signal 2

« 1 8 7
tp 0.1 1.428 s 0.034 s
Nmax 120 000 120 000 100 00
Dt 0.01 1/700 s 1/290 s
m 3~* !, 5~** ! 7 7
t 10 3 3
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very small values«,2 it approaches~but it never reaches!
the theoretically calculated value.

A different effect is observed for the stiff Signal 1. For
small values«,4 the calculated values of the exponents are
extremely large and can be rejected because the summation
of the exponents, i.e., the divergence of the vector field
( j51
m l j']f~x! is a positive number which is unacceptable

for the dissipative system Fe–2M H2SO4. The extremely
large values of the exponents for small« can be attributed to
the significant presence of noise for small values of the ra-
dius, «. For 3,«,7 or 0.13,«/«A,0.30 ~where«A'23! a
plateau is observed. For«.7 the calculated values are sub-
jected to small changes of« possibly due to the fact that the
m vectors yi can not be considered as small anymore
@Fig. 4~b!#.

In Fig. 4~c! the « dependence of the Lyapunov spectrum
for the smooth Signal 2 is presented. As can be seen, the
spectrum is very stable to changes of the parameter« even
though the zero exponent is not well approximated. The val-
ues of li are forming a plateau for 4<«<8 or
0.18<«/«A<0.36 ~where«A'22!.

In contrast with the Sano and Sawada algorithm, the Eck-
mann et al. algorithm seems to be more stable to small

changes of the radius« even for the negative Lyapunov ex-
ponent of the Lorenz system, as it can be seen from Fig. 5~a!.
In this figure we notice that the spectrum is more or less
stable for 2<«<8 or 0.03<«/«A<0.12 ~where«A'65!. For
largest values of« the spectrum increases possibly due to the
large magnitude of the vectorsyi . Additionally, the calcu-
lated value of the negative Lyapunov exponents lie very
close to the theoretical ones.

A similar trend with that of the Sano and Sawada
algorithm is observed for the stiff experimental Signal 1. For
small values «,7 the exponents are very large
and subjected to small changes of«. For 7<«<10
~0.30<«/«A<0.44! a plateau is observed where the spectrum
is more or less stable. For«.10 an increase of the exponents
is observed due to the large norm of the vectorsyi @Fig.
5~b!#.

Finally, the Lyapunov spectrum of Signal 2 is very stable
for increasing values of «, especially for 4<«<7
~0.18<«/«A<0.32! where a plateau is observed. The zero
exponent is also calculated with good accuracy as it can be
seen in Fig. 5~c!.

We must have in mind that as far as it concerns the ex-
perimental signals the noise due to the AD converter is 0.005

FIG. 4. The effect of the radius« on the results of the Sano and
Sawada algorithm.~a! Effect of « on the Lyapunov spectrum of the
Lorenz signal;~b! effect of « on Signal 1, and~c! effect of « on
Signal 2.

FIG. 5. The effect of the radius« on the results of the Eckmann
et al. algorithm. ~a! Effect of « on the Lyapunov spectrum of the
Lorenz signal;~b! effect of« on Signal 1, and~c! effect of« on the
Signal 2.
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mA, about 0.033% of the experimental signal’s amplitude.
Additionally, the noise due the potensiostat is 0.03 mA, 0.2%
of the amplitude of the experimental signal. As a conse-
quence, by using a radius« close to this noise level we
expect a deviation for the true values.

B. The effect of the propagation timetp

The propagation timetp5nDt, wherenPN* , may be the
most crucial parameter of both algorithms; the results of both
algorithms are highly subjected to the choice of the propaga-
tion time. As it can be seen from Eqs.~31! and~34! for very
small propagation time the calculated Lyapunov exponents
will be extremely large due to the value of the term,t p

21.
One might think that fork→` the termktp in Eqs.~31! and
~34! would become small and thus the true values oflj could
be calculated. The true calculation oflj cannot be performed
even for large values ofk, becausek serves only for the
calculation of the mean exponential divergence or conver-
gence of the nearby orbits.

The effect of the propagation time on the Lyapunov spec-
trum can be studied by varyingtp for fixed values of the rest
of the parameters, shown in Table I. The dependence of the
Lyapunov spectrum of the Lorenz system ontp when the
Sano and Sawada algorithm is implemented, is presented in
Fig. 6~a!. It can be seen that for small values of the propa-
gation time,tp,0.04, the calculated values of the exponents
are very large. A plateau is observed for 0.04<tp<0.08
where the exponents are more or less stable to changes of the
propagation time.

In Fig. 6~b! the dependence of the Lyapunov spectrum on
the propagation time for Signal 1 is presented. Fortp,1.43
sec the spectrum is highly subjected to changes of the propa-
gation time. In contrast, for 1.43 sec<tp<1.86 sec a plateau
is formed and the Lyapunov exponents attain a stable value.

A similar effect is observed for the smooth Signal 2, as it
is shown in Fig. 6~c!. For tp,0.035 sec the spectrum does
not attain stable values for increasing propagation time. For
0.035 sec,tp,0.049 sec a plateau is formed and the
Lyapunov exponents attain a stable value, even though a
zero exponent is not well determined.

The dependence of the Lyapunov spectrum of the Lorenz
signal on the propagation time using the Eckmannet al. al-
gorithm is similar with the one for the Sano and Sawada
algorithm. This can be seen in Fig. 7~a! where for small
values of the propagation timetp<0.03 the calculated expo-
nents depend on the chosen value of the propagation time.
For 0.03<tp<0.06 a plateau is formed where the exponents
are independent of the propagation time. For increasingtp an
increase of the spectrum also takes place.

A great similarity of the effect oftp on the Lyapunov
exponents is observed for both algorithms also in the case of
the stiff experimental Signal 1. As it can be seen in Fig. 7~b!
for tp<0.657 sec the spectrum is irregularly subjected to the
changes of the propagation time. For 0.657 sec,tp<0.920
sec a plateau is formed where the Lyapunov exponents attain
a value which does not depend on the choice oftp .

The dependence of Signal 2 is shown in Fig. 7~c!. For
tp,0.021 sec the Lyapunov exponents depend on changes of
propagation time. For 0.021 sec<tp<0.042 sec a plateau is
formed where the Lyapunov exponents attain fixed values

which do not depend strongly on the choice of the propaga-
tion time.

V. STUDY OF THE SIGNAL PARAMETERS Nmax , Dt

A. The effect of the number of data pointsNmax

The number of total data points is very important for the
reliable determination of the Lyapunov spectrum. J.-P. Eck-
mann and D. Ruelle@30# demandNmax510m/2 points for the
evaluation of the dimension of the attractor andNmax510m

for the calculation of the Lyapunov exponents. This means
that if the embedding dimension used is 4 then the required
number of points will be 104. Sano and Sawada@12# require
Nmax533104–143104 points for the same embedding di-
mension.

In practice, the total number of points must be large in
order to obtain a dense attractor in the embedding space. As
the embedding dimension increases the attractor becomes
larger Eq.~49! and thus the required number of data points
Nmax increases, too, in order to maintain a dense enough
attractor. It is obvious that the total number of experimental

FIG. 6. The effect of the propagation timetp on the results of
the Sano and Sawada algorithm.~a! Effect of tp on the Lyapunov
spectrum of the Lorenz signal;~b! effect of tp on Signal 1, and~c!
effect of tp on Signal 2.
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pointsNmaxmust be large by means of a large total sampling
time and not due to the increase of the sampling rate.

In order to study the effect ofNmax all other parameters
are kept constant~Table I! andNmax is varied. The effect of
Nmax on the Lyapunov exponents of the Lorenz system,
when the Sano and Sawada algorithm is used, is presented in
Fig. 8~a!. As it can be seen, the calculated spectrum is stable
for valuesNmax>30 000 data points. The deviation of the
Lyapunov spectrum from the true values becomes large for
smaller values ofNmax where the reconstructed attractor is
not dense enough.

As it is presented in Fig. 8~b! the Lyapunov spectrum of
Signal 1 is more sensitive to changes ofNmax. Thus we
observe an increase of all nonzero exponents for the decreas-
ing values ofNmax. The increase of the values of the expo-
nents becomes large forNmax,80 000 points.

The Lyapunov spectrum of the smooth experimental Sig-
nal 2 is very stable even for very small values of the param-
eter Nmax. This is shown Fig. 8~c! where forNmax.4000
points, the spectrum attains a fixed value which is not sub-
jected to changes of the total number of experimental points.

The Eckmannet al.algorithm seems to be very stable and
precise even for very small values of the parameterNmax as
far as it concerns the noise-free time series obtained from the
Lorenz equations. Thus even forNmax510 000 points the
calculated values of the Lyapunov exponents for the Lorenz
system remain very close to the theoretical values Fig. 9~a!.

In contrast with the great stability of the Eckmannet al.
algorithm for the Lorenz signal, the situation is somehow
different for Signal 1 and seems similar to the results of the
Sano and Sawada algorithm. Thus, forNmax,80 000 points
the Lyapunov exponents tend to become very sensitive to the
decrease of the number of data points Fig. 9~b!.

By decreasing the number of points of Signal 2 we ob-
serve that the calculated values of the Lyapunov exponents
do not change forNmax>4000 points. The dependence of the
Lyapunov spectrum onNmax, using the Eckmannet al.algo-
rithm can be seen in Fig. 9~c!.

B. The effect of the sampling rate,Dt21

As it was mentioned in Sec. V A the total number of
points must be large in the sense of a large total sampling
time and not of an extremely large value of the sampling

FIG. 7. The effect of the propagation timetp on the results of
the Eckmannet al. algorithm. ~a! Effect of tp on the Lyapunov
spectrum of the Lorenz signal;~b! effect of tp on Signal 1, and~c!
effect of tp on Signal 2.

FIG. 8. The effect of the maximum number of data pointsNmax
on the results of the Sano and Sawada algorithm.~a! Effect ofNmax
on the Lyapunov spectrum of the Lorenz signal;~b! effect ofNmax
on Signal 1, and~c! effect ofNmax on Signal 2.
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rate. The choice of a very large sampling rateDt21 causes
three problems. First, it leads to the false feeling that the total
number of experimental points are enough for the true deter-
mination of the Lyapunov spectrum. Second, the determined
small vectorsyj will mainly lie on the same orbit@Fig. 3~b!#
and so they will not represent vectors in the tangent space.
Finally, an extreme value ofDt21 will cause an overestima-
tion of the spectrum due to the large value of the termnDt.

These three reasons indicate that the choice of the proper
sampling rate is actually crucial and has to be studied care-
fully. Of course it must be considered that the sampling rate
must be large enough in order to capture all the features of
the experimental signal. In the present section we attempt a
brief study of the effect ofDt21 for the three signals under
study, for three different values of the sampling rate. We did
not perform different experiments to obtain signals for a dif-
ferent sampling rate of the AD converter but we used the
same experimental signals by sampling points in a different
rate. This was done in order to ensure that we are dealing
with exactly the same experimental signals.

The effect of the sampling rate was studied by keeping all
other parameters constant~Table I! and varyingDt21. The
effect of the sampling rate on the Lyapunov spectrum of the

Lorenz system, using the Sano and Sawada algorithm, is
presented in Fig. 10~a! for three different values ofDt21. As
can be seen, the Lyapunov spectrum tends to have higher
values for the increasing values ofDt ~decreasingDt21!. A
similar shift is observed for the stiff experimental Signal 1
Fig. 10~b!. For large values ofDt we do not expect to cal-
culate the true values of the Lyapunov exponents because
many features of the experimental signal are not captured
due to the stiffness of the signal. In contrast, the Lyapunov
spectrum is well determined for Signal 2 due to the smooth-
ness of the time series Fig. 10~c!.

Similar trends are observed also when the Eckmannet al.
algorithm is implemented. Large sampling rates cause false
values of the Lyapunov exponents of the Lorenz signal as
well as for Signal 1. The effect of the choice ofDt for these
two signals can be seen in Figs. 11~a! and 11~b!. In contrast,
the Lyapunov spectrum remains fairly constant for three dif-
ferent values ofDt in the case of the smooth Signal 2@Fig.
11~c!#. In this figure we observe that only a small increase
takes place asDt increases while the positive and zero ex-
ponents remain constant.

FIG. 9. The effect of the maximum number of data pointsNmax
on the results of the Eckmannet al.algorithm.~a! Effect ofNmaxon
the Lyapunov spectrum of the Lorenz signal;~b! effect ofNmax on
Signal 1, and~c! effect ofNmax on Signal 2.

FIG. 10. The effect of the sampling rateDt21 on the results of
the Sano and Sawada algorithm.~a! Effect ofDt21 on the Lyapunov
spectrum of the Lorenz signal;~b! effect ofDt21 on Signal 1, and
~c! effect ofDt21 on Signal 2.
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VI. STUDY OF THE RECONSTRUCTION PARAMETERS
m,t

A. The effect of the embedding dimensionm

The reconstruction of the attractor from a scalar time se-
ries is based on a theorem proved by Takens@1#:

If y:M→R is an observable smooth function,M is a com-
pact manifold of dimensiond, wt~x! is the time evolution of
the dynamical system andx is a smooth vector field then the
map:M→R2d11, defined by,

F~x!5@y~x!,y„w~x!…,...,y„w2d~x!…# ~50!

is an embedding.
The above theorem states that the sufficient, but not nec-

essary, condition for an attractor of a dynamical system of
dimensiond to be embedded in anm-dimensional space is
m>2d11. The dimension of the space in which the attrac-
tor is reconstructed is called the embedding dimension. The
theorem can be applied directly in the case of the scalar time
series to obtain Eq.~26!. If the dimensiond of the system is
known or is guessed by intuition then a sufficiently large

embedding dimensionm can be used in order to fulfil the
condition of the above theorem.

As can be seen from Eqs.~31! and ~34! the Lyapunov
spectrum consists ofm exponents, equal to the embedding
dimensionm. Hence if the embedding dimension is chosen
to be greater than the minimum required embedding dimen-
sion then some spurious exponents will be calculated among
the true ones.

The minimumm can be calculated directly by several
techniques and thus the true Lyapunov spectrum can be ob-
tained @31,32#. Additionally, the time-reversal method pro-
posed by Parliz can be possibly used to determine all spuri-
ous exponents@33#. An empirical approach is to reveal the
spurious Lyapunov exponents from theirm dependence. For-
tunately, in many cases the spurious exponents lie between
the most negative exponent and zero and tend to wonder
with m. In these cases, if we are interested solely in the value
of the positive exponent~s! the spurious~negative! exponents
do not cause any confusion. The appearance of the spurious
Lyapunov exponents, which are about twice the true ones, is
very often. This phenomenon is generated by the finiteness
of the scalar time series where one expects nonlinearities to
be important, as in the case of the He´non map@11# or even
the Lorenz equations~see below!. If the noise of the system
is not too small relative to the precision and the density of
the data, one will see the true Lyapunov exponents and the
spurious ones will all be negative.

The procedure for the study of them dependence of the
spectrum is the same as in the preceding sections where the
constant values of the rest of the parameters are presented in
Table I. The effect ofm on the calculated values of the
Lyapunov exponents of the Lorenz signal using the Sano and
Sawada algorithm is shown in Fig. 12~a!. As can be seen for
m53 the three real exponents are calculated. Form54 a
spurious exponent emerges which is negative. Form55 two
spurious exponents exist, a negative one and a positive
which is twice the largest true exponents. Form56 a third
spurious exponent is revealed which has a positive value,
thrice the largest true exponent. Form57 another spurious
exponent is born which is negative.

In Fig. 12~b! we observe the dependence of the Lyapunov
spectrum on the embedding dimension for Signal 1. For
m53 the three Lyapunov exponents are present. By increas-
ingm another negative exponent is born. Form55 the most
negative exponent is also calculated. Form56 a new expo-
nent is present which is negative. Finally, form57 a second
positive exponent is born which is smaller than the most
positive Lyapunov exponent. As can be seen in Fig. 12~b! no
positive spurious exponents are present with values greater
than the largest true exponent, no matter how largem is
chosen.

A somehow similar effect is observed for Signal 2 in Fig.
12~c!. Thus form53 three exponents are calculated where
the positive and the zero one remain fairly constant by in-
creasingm. Form54 a new negative exponent is calculated.
For m55 another negative exponent is born, as well as for
m56 andm57 where all new exponents are negative. Once
again, no positive spurious exponents are present with values
greater than the largest true exponent, no matter how largem
is chosen.

FIG. 11. The effect of the sampling rateDt21 on the results of
the Eckmannet al. algorithm.~a! Effect of Dt21 on the Lyapunov
spectrum of the Lorenz signal;~b! effect ofDt21 on Signal 1, and
~c! effect ofDt21 on Signal 2.
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The trend of the spectrum of the Lorenz signal by varying
m when the Eckmannet al.algorithm is used is presented in
Fig. 13~a!. It is obvious that the birth of a spurious positive
exponent does not place no matter how largem becomes. For
m53, the three exponents are calculated which, all of them,
deviate from the real values. Form54 a new exponent is
born which is negative. Form55 another negative exponent
is calculated and the three true exponents tend to the theo-
retical values. Form56 a third negative exponent is calcu-
lated. Form57 the picture changes drastically with the birth
of a positive exponent which is smaller that the positive true
exponent and a negative exponent with a very large absolute
value. The true negative exponent also shifts to lower abso-
lute values form57.

The effect of the choicem on the Lyapunov spectrum of
Signal 1, by using the Eckmannet al.algorithm is presented
in Fig. 13~b!. It is obvious that no spurious exponents greater
than the true positive exponent are present. By increasingm
from 3 to 5 only negative exponents are revealed. Form56
a positive exponent is born with a value smaller that the true
positive one. Form57 an additional negative exponent is
calculated. A similar shift takes place in the case of the cal-

culation of the Lyapunov spectrum of Signal 2 with the use
of the Eckmannet al. algorithm. In Fig. 13~c! the exponents
are born regularly by increasingm and are all negative.

B. The effect of the time delaytDt

For the application of the Takens’ theorem Eq.~26! re-
quires the input of a time delay for the construction of the
m-dimensional vectors which consist of the reconstructed at-
tractor. For an infinite amount of high precision data points,
i.e., a noiseless scalar time series of infinite duration, the
time delay can be chosen arbitrarily. In the case of the physi-
cal experiments there is of course a lower limit for the choice
of the time delay which is equal to the sampling timeDt. For
a very small time delaytDt→0, all the reconstructed vectors
will be highly correlated and the attractor will lie on a
straight line. By increasingt the reconstructed vectors be-
come more uncorrelated and the reconstruction will capture
the geometry and the statistical properties of the underlying
system.

A naive selection oft is the value for which the autocor-
relation function first passes through zero. If the autocorre-

FIG. 12. The effect of the embedding dimensionm on the re-
sults of the Sano and Sawada algorithm.~a! Effect of m on the
Lyapunov spectrum of the Lorenz signal;~b! effect ofm on Signal
1, and~c! effect ofm on Signal 2.

FIG. 13. The effect of the embedding dimensionm on the re-
sults of the Eckmannet al. algorithm. ~a! Effect of m on the
Lyapunov spectrum of the Lorenz signal;~b! effect ofm on Signal
1, and~c! effect ofm on Signal 2.
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lation function does not pass through zero, its first minimum
can also be used as a proper time delay. As pointed out by
Fraser and Swinney@34#, the autocorrelation function ex-
presses linear independence and thus the above choice of the
time delay is actually gross. The same authors as well as
Liebert and Schuster@35# propose that the proper choice of
the time delay is the value which corresponds to the first
minimum of the mutual information which expresses general
dependence of the variables.

In order to study the effect oft on both algorithms, we
vary the time delaytDt for fixed values of the rest of the
parameters~Table I!. When the Sano and Sawada algorithm
is implemented, the Lyapunov spectrum actually depends on
the choice of the time delaytDt as can be seen in Fig. 14~a!.
For tDt,0.05 the calculated values of the Lyapunov expo-
nents deviate from the theoretically calculated values. At the
region 0.05<tDt<0.1 the Lyapunov spectrum is very close
to the true value. We must notice that this region is very
close to the region where the autocorrelation function of the
Lorenz signal passes through zero.

The effect of the choice oft on the spectrum of Signal 1
is shown in Fig. 14~b!. It is obvious that the calculated values
depend on the choice of the time delay. We can say that the

more suitable choice oftDt is the value 0.0043 sec where
the exponentl2 takes a value close to zero~3.46 1023!. For
all the other values oftDt, a large deviation of the zero
exponent is observed.

More stable results are obtained when the Sano and
Sawada algorithm is used for the determination of the
Lyapunov spectrum of Signal 2, for various values oftDt.
The dependence of the Lyapunov exponents on the time de-
lay is presented in Fig. 14~c! where a choice of the time
delay in the region 0.007 sec,tDt,0.0175 sec seems to
give stable and reasonable values of the Lyapunov expo-
nents.

The effect oftDt in the calculation of the Lyapunov ex-
ponents of the Lorenz signal by using the Eckmannet al.
algorithm is presented in Fig. 15~a!. As it can be seen from
this figure fortDt>0.028 the spectrum is constant and does
not depend strongly on the choice of the time delay.

The trend of the spectrum by varyingtDt when the Eck-
mannet al. algorithm in used for Signal 1 is shown in Fig.
15~b!. As it can be seen, fortDt.0.0026 sec no zero expo-
nent is observed and a shift of the spectrum to higher values

FIG. 15. The effect of the time delayt on the results of the
Eckmannet al.algorithm.~a! Effect of t on the Lyapunov spectrum
of the Lorenz signal;~b! effect of t on Signal 1, and~c! effect of t
on Signal 2.

FIG. 14. The effect of the time delayt on the results of the Sano
and Sawada algorithm.~a! Effect of t on the Lyapunov spectrum of
the Lorenz signal;~b! effect oft on Signal 1, and~c! effect oft on
Signal 2.

53 5441COMPARATIVE STUDY FOR THE CALCULATION OF THE . . .



is observed. Thus a suitable choice of the time delay should
be tDt<0.0026 sec.

By inspecting Fig. 15~c! we observe that the time delay
has an effect on the calculation of the Lyapunov exponents
of Signal 2. Only for time delay values in the interval 0.003
sec,tDt,0.014 sec a zero exponent is calculated and thus,
these values can be considered as suitable for the proper
choice oftDt.

VII. DISCUSSION OF THE RESULTS

In the present work we presented a brief description of the
Sano and Sawada and Eckmannet al.algorithms for the cal-
culation of the Lyapunov spectrum from experimental sig-
nals and we compared analytically and numerically the two
algorithms. We used a uniform formulation of the algorithms
which allowed us to prove that the calculated value of the
largest exponent is identical for both algorithms but there is
a mismatch of the rest of the spectrum. The above result was
confirmed with numerical calculations of the Lyapunov spec-
trum for one time series obtained from the Lorenz equations
and two time series obtained experimentally from the elec-
trochemical system Fe–2MH2SO4.

The calculation of the Lyapunov spectrum by using the
Sano and Sawada or the Eckmannet al. algorithm is based
on some assumptions which introduce a number of ambigu-
ities for the implementation of the algorithms. It is always
assumed that the operatorDf~x! is a continuous function in
the region defined by the propagation time, even for every
stiff experimental signals like the one presented in Fig. 1~b!.
The general solution of Eq.~11! is expected to have the form
of Eq. ~12! in the region of continuity of the operatorDf~x!.
It is obvious that this assumption is difficult to be verified
numerically.

Another assumption which cannot be verified is that the
radius« of the small sphere is considered as infinitesimally
small. It is well known that we expect the divergence of
nearby orbits to be exponential, if these are initially sepa-
rated only infinitesimally. Although, very often« is taken to
be quite large in order to avoid interference of the noise of
the system.

The linearity of Eq.~29! is another crucial assumption.

The use of linear least squares assumes that the vectorszj are
related linearly with the vectorsyj ~as was originally sug-
gested@11,12#!. This assumption is supposed to be valid if
the small propagation time is used. Nevertheless the choice
of tp is not straightforward and in the case of stiff signals
with small peak-to-peak time intervals it must be chosen
rather large due to the small value of the sampling rate. Ad-
ditionally, we must point out that even though the Lyapunov
exponents are defined fort→`, both algorithms do not cal-
culate the spectrum for asymptotic time but they rather mea-
sure the mean exponential divergence in the time scale of the
propagation time fork times ~k→`!.

Even though the validity of the above restrictions cannot
be proven rigorously, numerical experiments often suggest
that assumptions actually hold to some degree. In the present
work, we apply both algorithms for the calculation of the
Lyapunov exponents of the Lorenz signal Eq.~9!. They were
found to be very close to those values calculated from the
variational equations Eq.~13!. The same can be assumed to
hold for the smooth signals, like Signal 2. On the other hand,
the results concerning extreme situations~like Signal 1! must
be interpreted very thoughtfully.

The Sano and Sawada and the Eckmannet al. algorithms
were compared numerically for six parameters, namely, the
radius of the sphere, the propagation time, the maximum
number of points, the sampling rate, the embedding dimen-
sion, and the time delay, for three different time series. The
comparison showed that the Eckmannet al. algorithms is
more independent of the choice of« than the Sano and
Sawada algorithm, for the noise-free signal obtained from
the Lorenz equations. The same conclusion can be drawn for
the smooth experimental Signal 2; the Eckmannet al. algo-
rithm shows a plateau of some extent bigger than the one of
the Sano and Sawada algorithm and it calculates more accu-
rately the zero exponent. Both algorithms deviate from the
true values of the exponents for small values of« in the case
of the noisy experimental signals. In order to avoid small
choices of« a shell rather than a sphere can be used for the
formation of the small vectorsyj @22#. A similar effect is not
observed on the noise-free Lorenz signal, where the best re-
sults are obtain for small«. The linear approximation of the
operatorA(t) is expected to be accurate if« is selected as
described above, even though a nonlinear approximation
would improve the determination ofA(t) @17,18#.

The second algorithm parameter the propagation timetp
has a strong effect on the Lyapunov spectrum for both algo-
rithms. In order to utilize the linear-least-squares approxima-
tion of A(t), tp must not be large. On the other hand, ex-
tremely small propagation time will lead to the false
calculation of the unreasonably large Lyapunov exponents.
This effect is observed for both algorithms, especially when
the Lyapunov spectrum of the stiff Signal 1 is calculated.
The situation can be less dramatic if the smaller sampling
rate is used, where this is permissible. In the case of the
smooth Signal 2, where the sampling rate is four times less
of the sampling rate of Signal 1, smaller propagation time
can be used and a larger plateau region can be located. Un-
fortunately, a smaller sampling rate cannot be used for the
stiff signals which contain sharp peaks with small peak-to-
peak time intervals because the choice of a smaller sampling
rate will cause a bad quality signal from which any calcula-

FIG. 16. The use of the Gramm-Schmidt orthonormalization
instead of the Householder transformations in the Eckmannet al.
algorithm. A direct comparison with Fig. 7~a! gives an indication of
the poor accuracy of the calculations.
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tion would be nonsense. We expect results of poor accuracy,
from both algorithms, when a very stiff signal is recorded,
which is necessary with a large sampling rate. From the re-
sults we may conclude that the propagation time is propor-
tional to the dominant frequency of the aperiodic signal.

In this point we must notice that the accuracy of the re-
sults depends also on the numerical techniques used by the
algorithms. The Sano and Sawada algorithm seems to be
independent of the type of the orthonormalization used, that
is, the utilization of the Gramm-Schmidt or the Householder
transformation procedure. In contrast, the results of the Eck-
mannet al. algorithm depend strongly on the choice of the
orthonormalization procedure. In principal, both algorithms
utilize an orthonormalization procedure; the Sano and
Sawada algorithm in order to orthonormalize the vectorsei

( j )

and the Eckmannet al. algorithm in order to construct the
orthogonal matrixQi . For all the results presented in Secs.
IV, V, and VI, as far as it concerns the Eckmannet al.algo-
rithm, the Householder transformation was used. For the
sake of comparison in Fig. 16 we present the same calcula-
tions as the ones presented in Fig. 7~a!, by using the Gramm-
Schmidt orthonormalization procedure. It is obvious that the
Eckmannet al.algorithm gives very inaccurate results when
this orthonormalization procedure is used.

Even though a very large number of data points is as-
sumed to be required in order to calculate the Lyapunov
spectrum, by decreasing the number of points for smooth
signals the Lyapunov spectrum remains fairly constant even
for values less than 10 000 points. In contrast, the Lyapunov
spectrum of stiff signals seems more sensitive to the decrease
of Nmax. Thus, only forNmax>80 000 points, the Lyapunov
spectrum seems to converge to the true values.

The number of data pointsNmax must be large by means
of the maximum possible total sampling time and not due to
a large sampling rateDt21. In the case of a smooth signal the
sampling rate must have a moderate value; not too small in
order for the small vectorsyj to lie in different orbits and not
too large in order to capture all the features of the system.
This rule is difficult to apply in the case of the stiff signals.
Stiff signals have to be recorded with a very small sampling
rateDt21 and thus the Lyapunov spectrum is suspected to be
overestimated or even inaccurate, indifferently of the algo-
rithm used.

It must be pointed out that the Eckmannet al.algorithm is
more sensitive to the selection ofm. For smallm the accu-
racy of the results is rather poor and a larger embedding
dimension is necessary. On the other hand, the Sano and
Sawada algorithm converges even for smallm. The birth of
spurious exponents occurs for both algorithms.

A great deal of the literature is devoted to the existence of
spurious exponents among the true ones when a calculation
is done directly from the time series@19,31,32#. Some tech-
niques are already proposed either for the calculation of the
minimum embedding dimension or for the direct determina-
tion of spurious exponents@5,33#. Fortunately, spurious ex-
ponents often have values between the zero exponent and the
most negative one. It is possible that positive spurious expo-
nents which are twice or thrice that of the real positive ex-
ponent will be born for increasing values ofm. We must
notice that when the signal is not noise free the birth of
double or triple exponents does not take place. In this case

all spurious exponents lie between the largest and the small-
est exponent and so the signal can be characterized safely.

Even though in principle the time delayt can be chosen
arbitrarily, its choice is very crucial when dealing with ex-
perimental signals of finite duration and low precision. The
value oft can be chosen somehow empirically by varying its
value and searching for a plateau at the spectrum, a zero
exponent and a negative divergence of the vector field. In the
case of the Lorenz signal, the propert determined by this
way is very close to the first zero crossing of the autocorre-
lation function.

We should notice the large difference of the values of the
Lyapunov exponents of the two experimental signals by
varying the bifurcation parametersR ~ohmic resistance! and
E ~applied potential!. This is due to the fact that the
Lyapunov exponents are discontinuous functions of the bi-
furcation parameters and thus we do not expect a continuous
variation of the values of the exponents by varying the bifur-
cation parameters@4#.

We observe that the Eckmannet al. algorithm better ap-
proximates the zero and negative exponents in most cases
and it seems more promising for the accurate determination
of the whole spectrum. In general, the Eckmannet al. algo-
rithm gives stable Lyapunov exponents for a larger region of
the parameters and thus more easily determines the
Lyapunov spectrum. Its sensitivity to the choice of the or-
thonormalization procedure and the requirement of a large
embedding dimension is balanced by the more accurate de-
termination of the Lyapunov spectrum. On the other hand,
the Sano and Sawada algorithm is easy to implement and can
determine the Lyapunov exponents for smaller values of the
embedding dimension.

As a conclusion we may say that even though the central
idea of the Sano and Sawada and the Eckmannet al. algo-
rithms is the same, the later is superior due to the numerical
methodology used and it can determine the whole spectrum
more accurately. If we are interested only for the character-
ization of the nonlinear time series, any of the two algo-
rithms can be used to calculate the largest Lyapunov expo-
nent. The calculated Lyapunov exponents strongly depend
on the algorithm, signal and reconstruction parameters and
the results are expected to be accurate only in a parameter
region, often narrow, which must be chosen carefully by try-
ing to fulfill the basic assumptions and performing a variety
of numerical experiments. The stiffness of the signal is of a
great importance and results concerning this kind of signals
must be interpreted thoughtfully.

Future work on the determination of the Lyapunov spec-
trum from experimental signals must aim not only to the
improvement of the accuracy of the numerical techniques
and procedures of the algorithms but also to the introduction
of quantitative criteria which will allow an easy, proper, and
evena priori choice of the six algorithm parameters. A con-
venient choice of the algorithm parameters will permit the
use of the two algorithms as common scientific tools for the
characterization and study of nonlinear experimental signals.
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