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Comparative study for the calculation of the Lyapunov spectrum
from nonlinear experimental signals

Antonis Karantonis and Michael Pagitsas
Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
(Received 28 June 1995

A uniform formalism is introduced for the description and comparison of the algorithms of Sano and Sawada
[M. Sano and Y. Sawada, Phys. Rev. L&t 1082 (1985] and Eckmanret al. [J.-P. Eckmann, S. O.
Kamphorst, D. Ruelle, and S. Cilibert, Phys. Rev34, 4971(1986], for the calculation of the Lyapunov
spectrum from experimental data. It is shown that both algorithms coincide for the calculation of the maximum
Lyapunov exponent and differ for the other exponents. A numerical application is carried out which confirms
the above result. A detailed investigation of the dependence of the Sano and Sawada and the Etlainann
algorithms on the parameters of the algorithms, the signal and the reconstruction of the attractor, for the
calculation of the whole Lyapunov spectrum is presented. Calculations are performed for three kinds of
signals: (a) the noise-free dynamical variabiét) of the Lorenz systemp) the stiff and long duration time
evolution of the total current of the electrochemical oscillator Rd—B,SO, in the presence of external
Ohmic resistanc®, and(c) the smooth variation and short duration signal of the same experimental system for
a different set of parameters. A comparison between the results of the two algorithms is attempted as well as
an investigation of the trends of the Lyapunov spectrum by varying the algorithm, signal, and reconstruction
parameters.

PACS numbe(s): 02.70-c, 02.60-x, 05.45+b

I. INTRODUCTION 2

.
S(w)= lim %f g(s)e '“sds| , (3)
An intrinsic property of a large class of relatively low T 0
dimensional nonlinear dissipative dynamical systems is the )

existence of the strange or chaotic attractor in the phas¥herew is the angular frequency anjddenotes the modulus
space. The dynamical behavior of such physical systems &f @ complex number. The power spectriw) can be cal-

studied experimentally by recording an observable functiorfulated efficiently by the usual fast Fourier transfoiffT)
g(t), algorithm[3]. If the time evolution of a dynamical variable is

a quasiperiodic functiox(t) =h(wt,w-t,...,ot) then the
g(H)=G(x(1)), (1) observableg(t) will al_so be a q_uasiperiodic function of the
same set of frequencies; . In this case, the power spectrum
wherex(t) is the vector of the dynamical variables of the Will consist of discrete peaks corresponding to the frequen-
system,G:R% R is assumed to be a differentiable function €€S @i=2 j-1¢jjw;. Actually, in experimental situations
andd is the dimension of the system. The observa(l is  ONly the cas&=2 (or rarelyk=3) is observed. In contrast,
usually sampled at fixed time intervalst sec andAt 1 the power spectrum of a chaotlp motion will consist of a
sec ! denotes the sampling rate of an analog to digitdD) continuous band due to the aperiodicity of the signal and in
converter. Therefore, the observable is recorded as a sBINCiple the quasiperiodic and the chaotic evolution can be

quence of data points distinguished from the power spectrymh,5]. Nevertheless,
’ the continuous spectrum is easily confused with the power
(91,95, ’gNmax} ) spectrum of an experimental quasiperiodic signal when noise

is present. Therefore the aperiodicity can be used only as a
. . gross criterion for the characterization of a chaotic attractor.
sampled at equal time intervals. (2) N5 denotes the total The chaotic attractor is characterized not only by the ape-
number of data points wheredg,,At=T sec is the total jyqicity but also from the fact that often is a fractal object.
sampling time of the observable. The attractor of the dy-here are several dimensions which give a measure of the
namical system can be reconstructed from the sequeice fracta| character of a chaotic attractor. The most robust quan-

by using the method of time deldg]. , _tity calculated directly from the reconstructed attractor is the
The chaotic attractor has three main features which d'Sc‘:orreIation dimension

tinguish it from any other kind of attractors:(a) nonperiod-

icity, (b) fractal dimension, an¢c) sensitive dependence on c(r)
the initial conditions(exponential divergence of nearby or- D.=lim —, (4)
bits) [2]. o logr

The quantity which characterizes the aperiodicity of the
time evolution of a dynamical system is the power spectrumwhereC(r) is a function which counts points of the attractor
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having a distance less thanThe correlation dimensiob,  can be considered as a measure of the region of the attractor

is expected to have a noninteger value if the attractor is af high density where most trajectories spend most of the

fractal set[6]. time. The Lyapunov dimension can be considered also as an
Although the correlation dimensidb. can be calculated approximation of the capacity of the attractor even though its

directly from the experimental sequen(®, the procedure value is often smaller than the later.

suffers from several drawbacks. First, the calculations are Finally, in certain cases, the Hausdorff dimension can also

very time consuming even though several improvementde calculated if the Lyapunov spectrum is knofn,

have been done toward this direction and are already pre-

sented in the literature. Second, the procedure calculates a

single scalar which often lies very close to an integer value Dy=h(p)

and is influenced by the finite amount and precision of ex-

perimental data. This uncertainty of the results make the pogy,

sible fractal charz_icte_r of the chaotic attractor a poor criterion, 14« for a diffeomorphisnii:M2— M2, that is, for an invert-

for the characterization of a large class of experimental Si%iie and differentiable map of a two dimensional manifold

nals.
s . . 9].
The strongest indication of the existence of chaos is th«g ]It can be seen from the above that not only the largest
sensitive dependence on the initial conditions; solution%)Q

tarting f ) ts in the ph red ositive exponent but the whole spectrum is important when
starting from two points In the phase space separated oniye 4re interested in the characterization of a complex signal
infinitesimally are expected to diverge exponentially in time.

" L o as well as for the calculation of quantities which express
The sensitive dependence on initial conditions can be CONsaveral properties of the attractor

sidered as the fingerprint of chaos and regarded as an abso—-l-he three algorithms which are used more often for the
lute criterion for the distinction of the chaotic motion from calculation of the Lyapunov exponents from the experimen-
any other kind of time evolution. The quantity which €x- | 4ata are the algorithms of Wt al. [10], Eckmanret al.
presses the rate of divergence of nearby orbits of §11], and Sano and Sawada2]. The algorithm of Wolf
d-dimensional dynamical system and therefore the sensitivgy o ang similar modification§L3] calculate only the largest

!ty on initial conditions is the Lyapunov exponents, exponent, which is positive in the case of a chaotic signal.
i=1.2,...d [4]. The calculation of only the positive exponent can cause some

The Lyapunov exponents can be used not only for theyggeities when other criteria for the proper choice of the

characterization of a chaotic attractor, obtained ””merica”%lgorithm parameters are needed. Usually these are the exist-
or experimentally but also for the calculation of several Otherence of a zero exponefit4] and é negative summation of

Euantmeti. Thuts_ if at” pOSIthVt(E Lyaptunov exgonenlts Iatre e exponents. Neither of the above criteria can be used
nown, the metric entropy ot the systeém can be calculaleqynan the wolfet al. algorithm is implemented. Therefore it

[7], is difficult to know if the choice of the algorithm parameters,
the propagation time, the minimum distance of the neighbor-
ing vector and the conservation of the orientation are chosen

h(p)=J > M()mi(x)p(dx), (5)  properly. Additionally, the calculation of any other quantity
Ai=>0 like the entropy, Lyapunov and information dimension is not
possible because the Lyapunov spectrum remains undeter-
where p is a physical measure on the attractqgfx) the = mined when the Wolgt al. algorithm is implemented.
positive Lyapunov exponents, ang(x) their multiplicity. In The Eckmanret al. as well as the Sano and Sawada al-
the case of an ergodic system the Lyapunov exponents agorithms seem to be the most promising algorithms for the
independent of the position in the phase space. If additionealculation of the Lyapunov spectrum from experimental
ally their multiplicity is one, then Eq(5) takes the form, data. Both algorithms are based on the same key idea: the
time evolution of a small sphere defined by the neighboring
points of a reference vector of the attractor and the approxi-
h(p)= 2 N ©6) mate calculation of the tangent matrix propagating small per-
Ni>0 e turbations on the reconstructed attractor’s trajectory. The al-
gorithms are easy on the implementation and are based on

The metric entropyn(p) gives a measure of the mean rate of rather common numgrical techniques. Additionally, the pa-
rameters of the algorithms are actually only two, the evolu-

creation of information of the system due to the sensitivetion time and the radius of the small sphere. Their proper
dependence on initial conditiond,5]. P : prop

Another quantity which is directly calculated when the choice can be tested by seeking always for a zero exponent,

whole spectrum is known, is the Lyapunov or Kaplan—Yorke"’.l neg?tl\lge divergence of the vector fle(hiTgatlve summa-
dimension[8], tion of the Lyapunov exponentsand a plateau region at

which the calculated values are independent of the choice of
the parameters. Finally, the algorithms converge rather fast,

1 + ! ) A >0>\ (8)
)\1 |)\2| ’ 1 2

hereh(p) is the metric entropy of the system. Equati@

sk especially when the calculations are performed in a super-
D =k+ 1=1 ', (7) computing environment.
| Nics al The above mentioned advantages of the Sano and Sawada

and the Eckmaneet al. algorithm is the reason that they are
wherek=maxi:\;+---+\;>0}. The Lyapunov dimension already used by experimentalists in order to characterize
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complex signals. The great interest in these algorithms can @
be also viewed by the large number of improvements of
these two algorithms which are presented in the literature
[15-22. Even though the algorithms are already used as
tools for the characterization of the dynamical behavior and _ '
improvements are also proposed, the original algorithms areX
not yet investigated thoroughly as a function of their param-
eters and the features of the experimental signals. Some work =
was presented concerning the effect of noise on the
Lyapunov spectrum when the Sano and Sawada algorithm .
[23] and the Eckmanret al. algorithm[11] are used. It is

obvious though, that a detailed investigation of the effect of ®
the various parameters for a variety of signals must be per-
formed before any attempt for improvement of these two 1
algorithms is made. In the present work we implement the
two algorithms for a variety of experimental signals with <,
different features and study the trends of the algorithms by=
varying the parameters of the algorithms. It is shown that the
features of the experimental signal is of a great importance
for the proper choice of the parameters and in any case they ", s 1 15 2 25 s 35 & 45 s
must be chosen thoughtfully and after detailed verification. 1)

In this point we must notice that there is also a different
approach for the determination of the Lyapunov exponents ©
from the time series. The procedure is based on the construc-
tion of the model equations which reproduce the dynamical
behavior and the calculation of the Lyapunov exponents
from the resulting equations by using already known algo-
rithms[24]. This procedure will not concern us in the present
work.

The purpose of this study is twofold. First, the two algo-
rithms are compared at the formal level in order to reveal
their similarities and differences. A special emphasis is paid ts)
to express both algorithms in the same mathematical form
and elucidated their resemblance through the properties of FIG. 1. The three signals used for the calculation of the
the mathematical manipulations calculating the Lyapuno\L.yapunov spectrum@) Thex(t) variable of the Lorenz system for
spectrum. Second, a detailed study of the role of the algos=16, b=4, y=45.92; (b) the experimental signal of the system
rithm as well as of the signal and reconstruction parameterse-2M H,SO, for R=20Q, E=120 mV (Signal 7, and(c) the
is attempted in order to explore the trends of the Lyapunowexperimental signal of the system Fe#2H,SO, for R=18 ),
spectrum by varying the parameter values. The effect of th&=0 mV (Signal 2. Only the first 4000 points are presented.
various parameters is examined for three kind of signals with
different characteristics. The first system is a noise-free tim
series obtained numerically by integrating the Lorenz equag
tions,

N Ao ®oN

i{mA)

al data was carried out by an AD converter for the values of

e Ohmic resistanc&=20 ) and the applied potential

=120 mV. The sampling rate used was 700 Seand

120 000 data points were recorded. The mean amplitude of

the oscillations is about 15 mA whereas the peak-to-peak

time interval varies from 0.05 sec to 0.25 ddé6g. 1(b)].

' This signal can be considered as an extreme case due to its
) stiffness and small peak-to-peak time interval. We designate
y=(y=2)x-y this signal as Signal 1 throughout this paper.

' The third signal is obtained again experimentally from the

. electrochemical oscillator FeM H,SQ, in the presence of
z=Xxy—bz, 9) the external resistand®. This time the sampling rate used
was 290 sect and 10 000 data points were recorded. The
for 0=16, b=4, y=45.92. The integration of the Lorenz value of the ohmic resistance wRs=18 () and the applied
equations was performed by a 4th order Runge-Kutta algopotential wasE=0 mV. The mean amplitude of the oscilla-
rithm with integration step 0.01 and a single precision. Thetions is about 15 mA whereas the peak-to-peak time interval
variation of thex(t) variable was used for the determination varies from 0.5 sec to 1.5 s¢Eig. 1(c)]. We designate this

of the Lyapunov exponenf{sig. 1(a)]. signal as Signal 2 throughout this paper.

The second signal is obtained experimentally from the The paper is organized as follows: In Sec. Il we present
electrochemical oscillator Fe-M H,SO, in the presence of some formal aspects of the definition of the Lyapunov expo-
an external ohmic resistané® The experimental apparatus nents. In Sec. Ill the Sano and Sawada and the Eckmann
is described elsewhef@5]. The sampling of the experimen- et al. algorithms are presented to some extent and a compari-

X=—0o(x=y)
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son of the two algorithms is attempted. The effect of the ATA|ej):e2M‘|ej)_ 17
algorithm parameters on the Lyapunov spectrum is investi-
gated in Sec. IV. In Sec. V the effect of the time seriesBy multiplying both sides of Eq(17) with the left eigenvec-
characteristics is studied. Finally, the effect of the recontor (g], (assumingg|e)=4§;),
struction parameters of the attractor is presented in Sec. VI. - ot
The results are discussed in Sec. VII. (g|A'Alg) =M (18

All the calculations were performed in a VAX 9000 main
frame computer of the Aristotle University of Thessaloniki, But,
runnlng_under VMS 5.5. The codes of both algorithms were <ej|ATA|e,->=||A|eJ->||2. (19
written in FORTRAN.

By combining Eqs(18) and(19) we obtain,
Il. DEFINITION OF THE LYAPUNOV EXPONENTS
: . - IAle)l|=eMr. (20

Before proceeding to a brief description of the Sano and
Sawada and the Eckmaen al. algorithms it is necessary to Generally, leEMDE® D ... DE@ be subspaces dt [4].
define the Lyapunov exponents of a continuous dynamicalhen, the Lyapunov exponents are given by,
system which can be described by a set of nonlinear ordinary

differential equations, \j= lim - InHA(t)eJ-II, i=1.2,..d 21)
t—o

—

x=f(x,;), xeRY. (10)

_ _ _ where,e e EW—EU*D and|||| denotes any norrf2,4].
In Eqg. (10), x(t) is the vector of the dyn_ammal vanz_‘;\bles If eMJg is an eigenvaluéu; complex in generalof the real
and u the vector of parameters. The variational equations of,, ;rix A(t) and|fj> the corresponding eigenvector, then,

Eq. (10) will be,
£=DIf(x(1))é. 11
and by definition,
where denotes a small perturbation at the orbit poi(t),
Df(x(t)) is the dxd matrix with elements (f;|ATA|f;) =[A] ;). (23
[ofi(x(t))ox;, 1,j=1,2,...4d.
The solution of the variational equations in the region of BUL,

continuity of Df(x(t)) [26] can be written as, (fj|ATA|fj>=e”i‘efTit, (24

§U=AL00), (12 Where,u_j indicates the complex conjugate pf. By com-
where the propagatoA(t,0) satisfies the differential equa- PiNiNg Eas.(23) and (24) we obtain
ton JAlf)]|= eRes. (25)

A(t)=DFx(t)A(Y), (13 By comparing Egs(20) and(25) we see that the real part

of the eigenvalues of the matrik(t) are expected to coin-
cide with the eigenvalues of the symmetric matidA)*2,
which are always real because this matrix is Hermitfan a
. full discussion about the similarities of the eigenvalues and
ing form, eigenvectors of the matricea(t) and (ATA)Y? see[28]].
_ From the above, we notice that if the operaidt) is known,
§= A1 Adhado. 14 e Lyapunov spectrum can be calculated either by the ei-
genvalues of the matriA, Eq. (16), or by Eq.(21).
The variational equations E(L1) as well as their solution
Eq. (12) or Eq. (14) express the stability of the system Eq.
A=AA .. AA,. (150 (10 under infinitesimal perturbationg at the orbit point
X(t). Thus, the Lyapunov exponents can be considered as the
The Lyapunov exponents of the system at the orbit poinfate of convergence or divergence of nearby orbits separated
x(t) are associated with the logarithms of the eigenvalues dpy a small perturbatiod.
the symmetric matrix,

and the initial conditiorA(0,0)=I, wherel is the unit matrix.
For discrete time, i.e., by splitting the intenvdt] in k
discrete time regions, Eq12) can be written in the follow-

By inspecting Eq(14), we observe that the matri can be
also written as the matrix product,

[ll. DESCRIPTION AND COMPARISON OF THE SANO
t"m{[A(t)TA(t)]l’Z}:A- (16) AND SAWADA AND ECKMANN et al. ALGORITHMS
From Sec. Il we observe that the Lyapunov exponents can
The eigenvalues ok will have the forme*i for t—~ and  be calculated only if the operat@f(x(t)) or A(t) is known.
A(t)T is the transposed oA(t) [27]. Let lg) be the right If the set of ordinary differential equations describing the
eigenvector corresponding to the eigenvailé. Then, by  dynamical system is known then the calculation can be per-
definition (dropping the dependence dnfor simplicity),  formed directly since the matrilof(x(t)) is directly calcu-
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PG(x) Zi=Ay;, (29

% where themX m matrix A; is the approximation of the op-

erator A(t,0) at the orbit pointg,. The matrixA; can be
N determined numerically by solving the minimization prob-
' lem,
9 1 N
minS=min — > [lz;—Ay;l|?. (30
i=1

o A Aj N

— The minimization problem Eq30) can be solved by uti-

9 lizing a linear-least-squares procedure either by solving the
normal equationge.g., by Gauss eliminatiomor by applying
Householder transformation8].

g, Up to this point both algorithms follow the above proce-

dure in order to determine the operatdy. The Sano and

Sawada algorithm proceeds as follows:

FIG. 2. The construction of the small perturbation Vec;qrén (a) Operation OfAi on an orthonormal set of vectors
the three dimensional space for the sake of visualizatibne vec- {ej(i)} ji=1,2,...m.

tor g; denotes the reference vector of the okhifG(x)). The vector (b) Production of a new Se{e(i+n)} by orthonormalizing
g; denotes thgth neighbor lying in a sphere of radius the vectors{A-e(i)} y
1~] .

(c) Calculation of the Lyapunov spectrum from an equa-
lable. On the other hand, when an experiment is performegon analogous to Eq21),
we actually record only an observable function Ef). or
else the sequend®). It is obvious that in this case the op- 1 K _
eratorDf(x(t)) is not directly calculable and thus an approxi- Y =L E Iog||Aief')H (31
mation process must be introduced. pi=t
_ Both the Sano and Sawada and the Eckmenal. algo- and propagation to the next poigt, , (vector after propaga-
rithms are based on the least-squares approximation of tq(leon timet, =nAt)
operatorA(t) in the m-dimensional embedding space. Thus, The propcedure. is expected to converge to the Lyapunov
in order to calculate the Lyapunov spectrum of aspectrum for ko because the orthonormal seéel)}
d-dimensional system when only the seque(®ds known, defi b £ (M i) (i) EJ(2)
a reconstruction of the attractor must be performed first, €13 (i)su (?)paces (i()l)—spar{e] G+ "'('i’)ei+n}'

=sparel), &, ,...&l) )., EM™=sparfel) }.

The Eckmanret al. algorithm also approximates the op-
eratorA; by Eq.(30). In order to calculate the eigenvalues of
the matrixA [Eq. (16)] proceeds by the following steps:

(a) Factorization of the matrid;Q;_, by utilizing theQR

9=(9,.9/47.9/ 420 Qrs(m-1)0) s (26)

where/=1,2,..N.—m+1 andm=2d+1 is the embed-

ding dimension,rAt sec is the time delayeN*. decomposition techniqug, 29,
On the reconstructed attractor E§6), we choose a ref-
erencem vectorg; and formN smallm vectorsy; lying in a AQ_1=QR;, i=1.2,..k (32
m-dimensional hypersphere of radissaround the reference
vectorg;, whereQ; is an orthogonal matrix; is an upper triangular
matrix, andQ,=1. The decomposition, E432) is unique as
yi={(g-g)la—gl<e, j=12,...N (270  far as the matrixA;Q;_; is invertible. The decomposition

can be utilized, in principle, either by using the Gramm-
Schmidt orthonormalization procedure or the Householder
transformationg 3,29]. The operatorA=A,A,_1--AA; is
expected to converge to the upper triangular matrix,

where | || indicates the Euclidean norm. If the radiesis
chosen to be small, then vectorsy; can be considered as
small perturbations at the orbit poigt. Equation(27) indi-

cates t_hat the smalin vec_tors_yi can be constructed by A=RR, 1R 5 RoR;, k—. (33)
searching for vectorg; laying in a distance<e from the
reference poing; and formingy; as the vectorg;—g; (Fig. (b) Calculation of the Lyapunov spectrum from the diag-
2). ) o ~ onal elements oR;, (eigenvalues of), i.e.,
After a fixed time interval equal to the propagation time
t,=nAt sec, the smalin vectorsy; will be evolved to them 1 X N
vectorsz; N=r— E logRU"}) (34)
ktp i=1
z={(Gi+n—G+n)llGi—gll<e}, j=12,...N. (28)  and propagation to the next vecu, ,, (vector after propa-

gation timet,=nAt).
It can be assumed that the vectaysare generated from From the description of the procedure followed by both
the small vectory; by Eq. (14), algorithms we observe that the calculated values of the
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Lyapunov exponents strongly depend on six parameters. The A;Q,=Q;R;=U;, (41)
construction of the smaih vectorsy; depends on the choice

of the radiuse which expresses the neighborhood of the ref-WhereRl is an upper triangu|ar matrix ar@l is an orthogo_
erence orbit poing;. The calculation of the values of the nal matrix obtained by the orthonormalization of;¢akQ,)
Lyapunov exponents depends also on the choice of the-y (%) (or similarly by the Householder transformation of the

propagation timep= nAt, which expresses the time interval matrix AlQO)' By app|y|ng the above proceduyetimes we
in which the divergence or convergence of nearby orbits igptain,

studied. We call the radiusand the propagation timig the

algorithm parameters. AQr_1=QR=Uy, (42)
Additionally, the calculated Lyapunov spectrum depends

on two parameters concerning the recorded signal. These pghereR, is an upper triangular matrix ar@, is an orthogo-

rameters are the total number of data poiN{g., and the na| matrix obtained by the orthonormalization —of

sampling rateAt %, These two parameters are denoted as th@ol (A, Q,_,). But the matrixA will be given by the product

signal parameters. _ _of Eq.(15). By replacing the matrice&; , i=1,2,...k, in Eq.
Finally, the Lyapunov exponents are calculated in a suit{15) we obtain,
able reconstructed space and thus the calculated values de-

pend on the choice of the embedding dimensioand the A=QRRy_1--R,R;, (43)
time delayr which are denoted as the reconstruction param-
eters. where fork—o,Q,—1 [29]. The product of upper triangular

In order to investigate the similarities and differences ofmatrices is an upper triangular matrix and the determinant of
the two algorithms, let us describe the Sano and Sawadg, ypper triangular matrix equals to the product of its diag-
algorithm by using a notation similar to the notation used byynal elements. Therefore, the eigenvaluesiofvill be the
Eckman(rg)et al. T 0 o diagonal elements of the produ@t3) for k—. Thus, the

Let e”=(1,0,....0", &”=(0,1,....0",....e)=(0,0,....1] | yapunov exponents are given by,
be an initially chosen orthonormal set of vectors. Denote by
Q, the matrix having as columns the vecte®, 1 Ko
Nj=i log IT R, (44)
Q=[&" &, ... e 1=1, (35 P
. . . . or by Eq.(34) for computational reasons, under the restric-
wherel is the unit matrix. Let us denote iy, th(%)operatmn tion that the real part of the eigenvalues/fcoincide with
of the operator, to every element of the s¢¢;"’}, the eigenvalues ofATA)Y2 [28].

By inspecting Eqs(38) and(42), for k=i we notice that,
A1Qo=U;=[u™ u$",....u}7. (36)
U=QR;, (45)
Now, consider a new orthonormal set of vect{es-} which
are column vectors of a new orthogonal mat@x, produced that is, the matrixJ; is transformed to the upper triangular
by the orthonormalization of the vectougV=col (U,), matrix R; via an orthogonal transformation. But orthogonal
transformations preserve norms and thus we expect,
Ql:[e(1)7%(l)1"'le|("r})]1 (37) H .
' Juf’l=llcoh(Roll,  j=1,2,...m. (46)
and form the produch,Q,. By applying the above proce-

durek times we obtain, Let us compare the column vectorslgfandR; one by one,

(D) = =pR(LD
ui’[|=llcoll(R) =R, (47)
AQic-1= U=y up? . )], (38 luzI=lcoh(RI=F
) ) and,
For k—o the Lyapunov spectrum will be given by,
L K luVl=llcol(R)[[#RI,  j>2. (48)
_ (i) . -
)‘J_k_tp .21 log]uj"| (39 Equation(47) indicates that we should expect both algo-

rithms to give identical results of the largest Lyapunov ex-
ponent\,, because the Sano and Sawada algorithm calcu-
lates \; by summing the logarithms dfu{’|, j=1,2,...k
and the Eckmanet al. algorithm by summing the logarithms
of the matrix element®{1'V). As far as it concerns the rest of
the spectrum, we expect a mismatch. The Sano and Sawada
algorithm calculates; as the summation of the logarithms of

Qo=1, 40 |uD||, j>2 and the Eckmanat al. algorithm by the summa-

tion of the logarithms of the matrix elemerfe$/)). Equation

and calculating the decomposition, (48) indicates that these two quantities will be unequal.

becausei{) e EW—EU*Y (subspaces are defined as in Sec
[l B). It is obvious that Eq(39) is equivalent to Eq(31).

In a similar notation, the Eckmaret al. algorithm starts
the calculations by choosing a matiithe unit matriy,
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P(G(x))
P{(G(x))
2 A
@ 9% b) g
Vi
Yie2
i+1
S Y A FIG. 3. (a) The effect of the
choice of the small radius. No
g, points are laying in the sphere of
radius . (b) The effect of large
g g g radiuse. All points are laying on
« ' the same orbit and thus the vectors
y; do not represent the small per-
> turbation on the orbit poing; .
o] =
g
gz 92
IV. STUDY OF THE ALGORITHM PARAMETERS &, t, structed in them-dimensional space, the norm of any vector
A. The effect of the radius e will be,
In order to form the small vectorg of the tangent space ! ) 12
at a given reference point of the embedding space defined by lgill= 120 9i+jr (49
the vectorg; and study their evolution after a finite propaga-
tion time both Sano and Sawada and Eckmanal. algo-
rithms search foN neighboring vectorsy;, j=1,2,...N, It can be seen from Eq49) that the norm of any vector
within a m-dimensional hypersphere of radiss depends on the embedding dimensionHigher embedding

In general, the radius of the m sphere must be small dimensions cause more extensive attractors. Therefore as the
embedding dimension increases the permitted valuesaoé
dncreasing, too.

The effect ofe can be studied by varyingwhile keeping
|| the other parameters constdtite values of the constant
parameters are shown in Tablge The effect ofe on the
values of the Lyapunov spectrum of the Lorenz signal using
the Sano and Sawada algorithm is shown in F{g).4n this
figure we observe that the Sano and Sawada algorithm gives
stable result$i.e., independent of the variation of the param-
eterg for the positiveN; and zero exponent,, for a large

enough in order for the vectoys=g, —g; to be small and the
tangent space approximation to be fulfilled. Of course, whil
we are dealing with experimentally obtained time series in-
strumental and system noise as well as noise due to roun
off errors is always present. For this reagomust be greater
than the noise level of the system. The use of an extremel
small ¢ may also cause an incapability to determMem
neighboring vectors; if the sphere defined#is very small

it may be impossible to findN vectors satisfying the condi-
tion, ||gi—gj[<e [Fig. 3@]. At this point, it must be noticed region of ¢ values, k&<8 or 0.02<e/e,<0.16, (Where
that the numbeN of small vectorg/; must be greater tham £x~50). In contrast, the negative exponext seems to be

in order to avoid poor estimation of the least-squares proce\7ery subjective to the choice of the radigsThus, only for
dure. ,

However the use of largewill lead to the construction of
neighboring vectors which will not belong to the tangent
space at the orbit poirg; and thus, the hypothesis that the
vectorsy; represent infinitesimal perturbations at this orbitWhen the Sano and Sawada algorithm is uget) denotes when
point will not hold. Additionally, the use of large will the Eckmanret al. algorithm is used.
cause the algorithms to locate all the neighboring vectors on

TABLE I. Parameters used for the calculation of the Lyapunov
spectra of the Lorenz signal, Signal 1 and Signal 2. When one of the
parameters was varied all the others were kept congtagrdenotes

the same trajectory._ Therefore, the vectwsv_ill not repre- Lorenz signal Signal 1 Signal 2
sent initial perturbations at the reference pajnfFig. 3b)].

The terms “small” and “large” are used, though, some- & 1 8 7
how ambiguously. Often, it is useful to express the magnit, 0.1 1.428 s 0.034 s
tude of the radiug as the fractione/e,, wWheree, is the  Npax 120 000 120 000 100 00
mean or approximate radius of the reconstructed attractont 0.01 1/700 s 1/290 s
Nevertheless, the permitted valueseoWill depend also on m 30) glex) 7 7
the embedding dimensian chosen for the reconstruction of 10 3 3

the attractor. If it is assumed that the attractor is recon
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FIG. 5. The effect of the radius on the results of the Eckmann
et al. algorithm. (a) Effect of ¢ on the Lyapunov spectrum of the
Lorenz signaljb) effect ofe on Signal 1, andc) effect ofs on the
Signal 2.

FIG. 4. The effect of the radius on the results of the Sano and
Sawada algorithm(a) Effect of ¢ on the Lyapunov spectrum of the
Lorenz signal;(b) effect of ¢ on Signal 1, andc) effect of ¢ on
Signal 2.
changes of the radius even for the negative Lyapunov ex-
ponent of the Lorenz system, as it can be seen from Fay. 5
In this figure we notice that the spectrum is more or less
stable for 2<e=<8 or 0.03<¢/e,<0.12 (Wheree,~65). For

very small values<2 it approachegbut it never reaches
the theoretically calculated value.
A different effect is observed for the stiff Signal 1. For

small valuess<4 the calculated values of the exponents ar ) )
extremely large and can be rejected because the summati gest values of the spectrum increases possibly due to the

of the exponents, i.e., the divergence of the vector fiel arge magnitude of the Vectoss. Additionally, the ca_lcu-
E?‘:l)\ﬁ&f(x) is a positive number which is unacceptable ated value of the .negatlve Lyapunov exponents lie very
for the dissipative system FeM H,SO,. The extremely Close to the theoretical ones.
large values of the exponents for smaltan be attributed to A Similar trend with that of the Sano and Sawada
the significant presence of noise for small values of the raalgorithm is observed for the stiff experimental Signal 1. For
dius, e. For 3<e<7 or 0.13<e/e,<0.30 (Whereg,~23) a  small values <7 the exponents are very large
plateau is observed. Fer>7 the calculated values are sub- and subjected to small changes ef For 7<e<10
jected to small changes efpossibly due to the fact that the (0.30<e/e,<0.44) a plateau is observed where the spectrum
m vectorsy; can not be considered as small anymoreis more or less stable. Fer>10 an increase of the exponents
[Fig. 4(b)]. is observed due to the large norm of the vectgrgFig.

In Fig. 4(c) the ¢ dependence of the Lyapunov spectrum5(b)].
for the smooth Signal 2 is presented. As can be seen, the Finally, the Lyapunov spectrum of Signal 2 is very stable
spectrum is very stable to changes of the parameiven for increasing values ofe, especially for 4&e<7
though the zero exponent is not well approximated. The val(0.18<e/e,<0.32 where a plateau is observed. The zero
ues of \; are forming a platcau for 4e<8 or exponent is also calculated with good accuracy as it can be
0.18<e/e,<0.36 (Whereg,~22). seen in Fig. k).

In contrast with the Sano and Sawada algorithm, the Eck- We must have in mind that as far as it concerns the ex-
mann et al. algorithm seems to be more stable to smallperimental signals the noise due to the AD converter is 0.005
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mA, about 0.033% of the experimental signal’s amplitude. @
Additionally, the noise due the potensiostat is 0.03 mA, 0.2%
of the amplitude of the experimental signal. As a conse-
guence, by using a radius close to this noise level we
expect a deviation for the true values.

A 8¢
0 1
-12.+ A
B. The effect of the propagation timet, :12 1

The propagation timep: nAt, whereneN*, may be the -180.01 o.i)a o.i>3 041)4 042)5 o.l)e 0.1)7 o.i)s 0.1)9 ?.1
most crucial parameter of both algorithms; the results of both i,
algorithms are highly subjected to the choice of the propaga-
tion time. As it can be seen from Eq&1) and(34) for very (b)
small propagation time the calculated Lyapunov exponents s
will be extremely large due to the value of the tery, »
One might think that fok—o the termkt, in Egs.(31) and ] o .
(34) would become small and thus the true values;ofould 0 k
be calculated. The true calculation)gfcannot be performed Mo \ﬁ""%
even for large values ok, becausek serves only for the -2 ——— %),
calculation of the mean exponential divergence or conver- -3

-4 4

gence of the nearby orbits.

The effect of the propagation time on the Lyapunov spec-
trum can be studied by varyirtg for fixed values of the rest :
of the parameters, shown in Table |. The dependence of the ©
Lyapunov spectrum of the Lorenz system gnwhen the
Sano and Sawada algorithm is implemented, is presented in
Fig. 6(a). It can be seen that for small values of the propa-
gation time,t,<<0.04, the calculated values of the exponents
are very large. A plateau is observed for Gs34<0.08
where the exponents are more or less stable to changes of the

1.142857 1.285714 1.428571 1.571429 1.714286 1.857143
tp(s)

- 1y

Ai23a

propagation time. 80 1 00

In Fig. 6(b) the dependence of the Lyapunov spectrum on a0 ; ; } -150
the propagation time for Signal 1 is presented. 6r1.43 0014 0021 0028 0035 0042 0049
sec the spectrum is highly subjected to changes of the propa- ts)

gation time. In contrast, for 1.43 set,<1.86 sec a plateau
is formed and the Lyapunov exponents attain a stable value.

A similar effect is observed for the smooth Signal 2, as it !
the Sano and Sawada algorith(a) Effect of t, on the Lyapunov

is shown in Fig. €c). For t,<<0.035 sec the spectrum does
not attain stable values for increasing propagation time. Foppectrum of the Lorenz signal) effect oft, On Signal 1, andc)

0.035 se€t,<0.049 sec a plateau is formed and the effect oft, on Signal 2.
Lyapunov exponents attain a stable value, even though a
zero exponent is not well determined. which do not depend strongly on the choice of the propaga-

The dependence of the Lyapunov spectrum of the Loren#on time.
signal on the propagation time using the Eckmanial. al-
gorithm is similar with the one for the Sano and Sawada V. STUDY OF THE SIGNAL PARAMETERS N, At
algorithm. This can be seen in Fig(ay where for small
values of the propagation tintg=0.03 the calculated expo-
nents depend on the chosen value of the propagation time. The number of total data points is very important for the
For 0.03<t,=<0.06 a plateau is formed where the exponentgeliable determination of the Lyapunov spectrum. J.-P. Eck-
are mdependent of the propagation time. For increagjragn ~ mann and D. Ruellg30] demandN,,,,=10"? points for the
increase of the spectrum also takes place. evaluation of the dimension of the attractor awgl,=10"

A great similarity of the effect ot, on the Lyapunov for the calculation of the Lyapunov exponents. This means
exponents is observed for both algorithms also in the case dhat if the embedding dimension used is 4 then the required
the stiff experimental Signal 1. As it can be seen in Fidp) 7 number of points will be 1b Sano and Sawad42] require
for t,<0.657 sec the spectrum is irregularly subjected to theN |, ,,=3x10°~14x10* points for the same embedding di-
changes of the propagation time. For 0.657<sge<0.920  mension.
sec a plateau is formed where the Lyapunov exponents attain In practice, the total number of points must be large in
a value which does not depend on the choice,of order to obtain a dense attractor in the embedding space. As

The dependence of Signal 2 is shown in Figc)7For  the embedding dimension increases the attractor becomes
t,<<0.021 sec the Lyapunov exponents depend on changes rger Eq.(49) and thus the required number of data points
propagation time. For 0.021 set,<0.042 sec a plateau is N, increases, too, in order to maintain a dense enough
formed where the Lyapunov exponents attain fixed valuesttractor. It is obvious that the total number of experimental

FIG. 6. The effect of the propagation tinig on the results of

A. The effect of the number of data pointsN 54
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FIG. 7. The effect of the propagation tintg on the results of FIG. 8. The effect of the maximum number of data poiNts,,
the Eckmannet al. algorithm. (a) Effect of t, on the Lyapunov on the results of the Sano and Sawada algori@nEffect of N,
spectrum of the Lorenz signab) effect oft, on Signal 1, andc) on the Lyapunov spectrum of the Lorenz sigrél; effect of Nyjax
effect oft, on Signal 2. on Signal 1, andc) effect of N5, on Signal 2.

The Eckmanret al. algorithm seems to be very stable and
pointsN,,.x Must be large by means of a large total samplingpreciSe even for very small values of the paramdlgy, as
time and not due to the increase of the sampling rate. far as it concerns the noise-free time series obtained from the

In order to study the effect dfi, all other parameters | orenz equations. Thus even fdt,,,,=10 000 points the
are kept constanfTable |) andN,, is varied. The effect of calculated values of the Lyapunov exponents for the Lorenz
Nmax ON the Lyapunov exponents of the Lorenz systemsystem remain very close to the theoretical values Fig. 9
when the Sano and Sawada algorithm is used, is presented in In contrast with the great stability of the Eckmaanal.

Fig. 8(@). As it can be seen, the calculated spectrum is stablalgorithm for the Lorenz signal, the situation is somehow
for valuesN,,,=30 000 data points. The deviation of the different for Signal 1 and seems similar to the results of the
Lyapunov spectrum from the true values becomes large foBano and Sawada algorithm. Thus, fy,,<80 000 points
smaller values oN,,,, Where the reconstructed attractor is the Lyapunov exponents tend to become very sensitive to the
not dense enough. decrease of the number of data points Fign)9

As it is presented in Fig.(®) the Lyapunov spectrum of By decreasing the number of points of Signal 2 we ob-
Signal 1 is more sensitive to changes Mf,.,. Thus we Serve that the calculated vaIue; of the Lyapunov exponents
observe an increase of all nonzero exponents for the decreadQ not change foN,,,=4000 points. The dependence of the
ing values ofN,... The increase of the values of the expo- LY2Punov spectrum oNp,,, using the Eckmanat al. algo-
nents becomes large fot,,,,<80 000 points. rithm can be seen in Fig.(9).

The Lyapunov spectrum of the smooth experimental Sig-
nal 2 is very stable even for very small values of the param-
eter Nj,.x- This is shown Fig. &) where for N,,,,>4000 As it was mentioned in Sec. V A the total number of
points, the spectrum attains a fixed value which is not subpoints must be large in the sense of a large total sampling
jected to changes of the total number of experimental pointgime and not of an extremely large value of the sampling

B. The effect of the sampling rate, At ~*
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FIG. 9. The effect of the maximum number of data poiNfg.
on the results of the Eckmaret al. algorithm.(a) Effect of N5, 0n FIG. 10. The effect of the sampling rat~* on the results of
the Lyapunov spectrum of the Lorenz signéi) effect ofNiax 0N e sano and Sawada algorithé@. Effect of At~ on the Lyapunov
Signal 1, and(c) effect of Npax on Signal 2. spectrum of the Lorenz signalh) effect of At~ on Signal 1, and

(c) effect of At ™! on Signal 2.
rate. The choice of a very large sampling rate ! causes

three problems. First, it leads to the false feeling that the totg 5., system, using the Sano and Sawada algorithm, is
number of experimental points are enough for the true deter- ) '

e ; resented in Fig. 1@) for three different values okt 1. As
mination of the Lyapunov spectrum. Second, the determme@an be seen t%e Lyapunov spectrum tends to have higher
small vectorsy; will mainly lie on the same orbitFig. 3b)] '

and so they will not represent vectors in the tangent spacé’falu.eS for. thg increasing values AF (decregsmg&t ).' A
Finally, an extreme value okt~ will cause an overestima- SI_mllar shift is observed for the stiff experimental Signal 1
tion of the spectrum due to the large value of the terst, ~ F19- 10b). For large values oAt we do not expect to cal-

These three reasons indicate that the choice of the prop&Hlate the true values of the Lyapunov exponents because
sampling rate is actually crucial and has to be studied carén@ny features of the experimental signal are not captured
fully. Of course it must be considered that the sampling ratélue to the stifiness of the signal. In contrast, the Lyapunov
must be large enough in order to capture all the features dgiPectrum is well determined for Signal 2 due to the smooth-
the experimental signal. In the present section we attempt Bess of the time series Fig. ().
brief study of the effect oAt~ for the three signals under ~ Similar trends are observed also when the Eckmetral.
study, for three different values of the sampling rate. We didalgorithm is implemented. Large sampling rates cause false
not perform different experiments to obtain signals for a dif-values of the Lyapunov exponents of the Lorenz signal as
ferent sampling rate of the AD converter but we used thewell as for Signal 1. The effect of the choice &f for these
same experimental signals by sampling points in a differentwo signals can be seen in Figs.(&land 11b). In contrast,
rate. This was done in order to ensure that we are dealinthe Lyapunov spectrum remains fairly constant for three dif-
with exactly the same experimental signals. ferent values ofAt in the case of the smooth SignalRig.

The effect of the sampling rate was studied by keeping allL1(c)]. In this figure we observe that only a small increase
other parameters constaffable |) and varyingAt 1. The takes place adt increases while the positive and zero ex-
effect of the sampling rate on the Lyapunov spectrum of thgponents remain constant.



53 COMPARATIVE STUDY FOR THE CALCULATION OF THE . .. 5439

@

3%
-15 /

203 ‘
0.01 0.02 0.03

x|
z

Adbbioxnmo
?‘X%’

%
- }\7
5 ‘ .
0.001428571 0.002857143 0.004285714
Atfs)
(©
10 ¢ M
0 % %
s
104 — e

A -20 f/_—_"/ As
30 % o
40—

-50 ;l;—//‘—n—

-60 + —

0.003448276 0.022222222 0.010344828
At(s)

embedding dimensiom can be used in order to fulfil the
condition of the above theorem.

As can be seen from Eq$31) and (34) the Lyapunov
spectrum consists ah exponents, equal to the embedding
dimensionm. Hence if the embedding dimension is chosen
to be greater than the minimum required embedding dimen-
sion then some spurious exponents will be calculated among
the true ones.

The minimumm can be calculated directly by several
techniques and thus the true Lyapunov spectrum can be ob-
tained[31,32. Additionally, the time-reversal method pro-
posed by Parliz can be possibly used to determine all spuri-
ous exponent§33]. An empirical approach is to reveal the
spurious Lyapunov exponents from theirdependence. For-
tunately, in many cases the spurious exponents lie between
the most negative exponent and zero and tend to wonder
with m. In these cases, if we are interested solely in the value
of the positive exponefs) the spuriougnegative exponents
do not cause any confusion. The appearance of the spurious
Lyapunov exponents, which are about twice the true ones, is
very often. This phenomenon is generated by the finiteness
of the scalar time series where one expects nonlinearities to
be important, as in the case of thérd@ map[11] or even
the Lorenz equationgsee below If the noise of the system
is not too small relative to the precision and the density of
the data, one will see the true Lyapunov exponents and the
spurious ones will all be negative.

The procedure for the study of the dependence of the
spectrum is the same as in the preceding sections where the
constant values of the rest of the parameters are presented in
Table I. The effect ofm on the calculated values of the
Lyapunov exponents of the Lorenz signal using the Sano and
Sawada algorithm is shown in Fig. . As can be seen for
m=3 the three real exponents are calculated. Fer4 a

FIG. 11. The effect of the sampling ratg ! on the results of ) Bk °
the Eckmanret al. algorithm. (a) Effect of At % on the Lyapunov spurious exponent emerges which is negative.rftei5 two

spectrum of the Lorenz signab) effect of At ™% on Signal 1, and  SPUrious exponents exist, a negative one and a positive
(0) effect of At on Signal 2. which is twice the largest true exponents. Fo=6 a third

spurious exponent is revealed which has a positive value,
VI. STUDY OF THE RECONSTRUCTION PARAMETERS thrice the largest true exponent. For=7 another spurious
m,r exponent is born which is negative.

In Fig. 12b) we observe the dependence of the Lyapunov
spectrum on the embedding dimension for Signal 1. For

The reconstruction of the attractor from a scalar time sem=3 the three Lyapunov exponents are present. By increas-
ries is based on a theorem proved by Takgs ing m another negative exponent is born. Foe5 the most

If y:M—R is an observable smooth functidd, is a com-  negative exponent is also calculated. For6 a new expo-
pact manifold of dimensiod, ¢(x) is the time evolution of ~nent is present which is negative. Finally, for=7 a second
the dynamical system andis a smooth vector field then the Positive exponent is born which is smaller than the most
map:M—R?4* defined by, positive Lyapunov exponent. As can be seen in FigbjL2o

positive spurious exponents are present with values greater
D(x)=[y(x),y(¢(X)),....y(¢24(X))] (500 than the largest true exponent, no matter how largés

chosen.
is an embedding. A somehow similar effect is observed for Signal 2 in Fig.

The above theorem states that the sufficient, but not nect2(c). Thus form=3 three exponents are calculated where
essary, condition for an attractor of a dynamical system ofhe positive and the zero one remain fairly constant by in-
dimensiond to be embedded in am-dimensional space is creasingmn. Form=4 a new negative exponent is calculated.
m=2d+ 1. The dimension of the space in which the attrac-For m=5 another negative exponent is born, as well as for
tor is reconstructed is called the embedding dimension. Thex=6 andm=7 where all new exponents are negative. Once
theorem can be applied directly in the case of the scalar timagain, no positive spurious exponents are present with values
series to obtain Eq26). If the dimensiord of the system is  greater than the largest true exponent, no matter how farge
known or is guessed by intuition then a sufficiently largeis chosen.

A. The effect of the embedding dimensiorm
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FIG. 13. The effect of the embedding dimensionon the re-
sults of the Eckmanret al. algorithm. (a) Effect of m on the
Lyapunov spectrum of the Lorenz signéb) effect of m on Signal
1, and(c) effect of m on Signal 2.

FIG. 12. The effect of the embedding dimensionon the re-
sults of the Sano and Sawada algorith{@. Effect of m on the
Lyapunov spectrum of the Lorenz signéh) effect of m on Signal
1, and(c) effect of m on Signal 2.

The trend of the spectrum of the Lorenz signal by varyingculation of the Lyapunov spectrum of Signal 2 with the use
m when the Eckmanet al. algorithm is used is presented in of the Eckmanret al. algorithm. In Fig. 18c) the exponents
Fig. 13a). It is obvious that the birth of a spurious positive are born regularly by increasing and are all negative.
exponent does not place no matter how largkecomes. For
m=3, the three exponents are calculated which, all of them,
deviate from the real values. Fon=4 a new exponent is
born which is negative. Fan=5 another negative exponent  For the application of the Takens’ theorem Ef6) re-
is calculated and the three true exponents tend to the theguires the input of a time delay for the construction of the
retical values. Fom=6 a third negative exponent is calcu- m-dimensional vectors which consist of the reconstructed at-
lated. Form=7 the picture changes drastically with the birth tractor. For an infinite amount of high precision data points,
of a positive exponent which is smaller that the positive true.e., a noiseless scalar time series of infinite duration, the
exponent and a negative exponent with a very large absolutéme delay can be chosen arbitrarily. In the case of the physi-
value. The true negative exponent also shifts to lower absasal experiments there is of course a lower limit for the choice
lute values fom=7. of the time delay which is equal to the sampling tidhe For

The effect of the choicen on the Lyapunov spectrum of a very small time delayAt—0, all the reconstructed vectors
Signal 1, by using the Eckmaret al. algorithm is presented will be highly correlated and the attractor will lie on a
in Fig. 13b). It is obvious that no spurious exponents greaterstraight line. By increasing the reconstructed vectors be-
than the true positive exponent are present. By increasing come more uncorrelated and the reconstruction will capture
from 3 to 5 only negative exponents are revealed.fRer6  the geometry and the statistical properties of the underlying
a positive exponent is born with a value smaller that the trueystem.
positive one. Fom=7 an additional negative exponent is A naive selection ofris the value for which the autocor-
calculated. A similar shift takes place in the case of the calfelation function first passes through zero. If the autocorre-

B. The effect of the time delayrAt
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FIG. 14. The effect of the time delayon the results of the Sano
and Sawada algorithnfa) Effect of on the Lyapunov spectrum of
the Lorenz signalfb) effect of 7 on Signal 1, andc) effect of 7 on
Signal 2.

FIG. 15. The effect of the time delay on the results of the
Eckmanret al. algorithm.(a) Effect of 7 on the Lyapunov spectrum
of the Lorenz signal(b) effect of 7 on Signal 1, andc) effect of r
on Signal 2.

lation function does not pass through zero, its first minimum

can also be used as a proper time delay. As pointed out biyiore suitable choice ofAt is the value 0.0043 sec where
Fraser and Swinnej34], the autocorrelation function ex- the exponenh, takes a value close to zef8.46 10°3). For
presses linear independence and thus the above choice of thg the other values ofAt, a large deviation of the zero
time delay is actually gross. The same authors as well a8xponent is observed.

Liebert and Schustgi35] propose that the proper choice of  y\iqre staple results are obtained when the Sano and

th? fime d?'g]y IS t[]e Iyalfue W?'Ch cr?.rrﬁsponds to the f'rSanada algorithm is used for the determination of the
minimum ot thé mutual Information which €xpresses genera yapunov spectrum of Signal 2, for various valuesdft.

dependence of the variables. .
: The dependence of the Lyapunov exponents on the time de-
In order to study the effect of on both algorithms, we lay is presented in Fig. 1d) where a choice of the time

vary the time delayrAt for fixed values of the rest of the ! .
parametergTable ). When the Sano and Sawada algorithmd_elay in the region 0.007 serAt<0.0175 sec seems to

is implemented, the Lyapunov spectrum actually depends ofiVe Stable and reasonable values of the Lyapunov expo-

the choice of the time delayAt as can be seen in Fig. @&~ NeNts. _ _

For 7At<0.05 the calculated values of the Lyapunov expo- 1he effect of7At in the calculation of the Lyapunov ex-

nents deviate from the theoretically calculated values. At th@onents of the Lorenz signal by using the Eckmaitral.

region 0.05rAt=<0.1 the Lyapunov spectrum is very close algorithm is presented in Fig. {&. As it can be seen from

to the true value. We must notice that this region is verythis figure forrAt=0.028 the spectrum is constant and does

close to the region where the autocorrelation function of theot depend strongly on the choice of the time delay.

Lorenz signal passes through zero. The trend of the spectrum by varying\t when the Eck-
The effect of the choice of on the spectrum of Signal 1 mannet al. algorithm in used for Signal 1 is shown in Fig.

is shown in Fig. 14b). It is obvious that the calculated values 15(b). As it can be seen, forAt>0.0026 sec no zero expo-

depend on the choice of the time delay. We can say that theent is observed and a shift of the spectrum to higher values
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0 The use of linear least squares assumes that the vegians
related linearly with the vectorg; (as was originally sug-
gested[11,12). This assumption is supposed to be valid if
the small propagation time is used. Nevertheless the choice

b & AN

2o -10 & of t, is not straightforward and in the case of stiff signals
21 :i with small peak-to-peak time intervals it must be chosen
N 5 rather large due to the small value of the sampling rate. Ad-

-18 ditionally, we must point out that even though the Lyapunov
B 20 exponents are defined foro, both algorithms do not cal-
0.0014 0.0043 0.0071 0.01 0.0129 0.0157 0.0186 0.0214 0.0243 0.0271

culate the spectrum for asymptotic time but they rather mea-
sure the mean exponential divergence in the time scale of the

FIG. 16. The use of the Gramm-Schmidt orthonormalizationPropagation time fok times (k—2).

(s}

instead of the Householder transformations in the Eckmetrai. Even though the validity of the above restrictions cannot
algorithm. A direct comparison with Fig(a gives an indication of ~be proven rigorously, numerical experiments often suggest
the poor accuracy of the calculations. that assumptions actually hold to some degree. In the present

work, we apply both algorithms for the calculation of the
Lyapunov exponents of the Lorenz signal E9). They were
. found to be very close to those values calculated from the
is observed. Thus a suitable choice of the time delay shoulggriational equations Eq13). The same can be assumed to
be 7At<0.0026 sec. _ hold for the smooth signals, like Signal 2. On the other hand,
By inspecting Fig. 1&) we observe that the time delay the results concerning extreme situatiditee Signal 3 must
has an effect on the calculation of the Lyapunov exponentgg interpreted very thoughtfully.
of Signal 2. Only for time delay values in the interval 0.003  The Sano and Sawada and the Eckmanal. algorithms
sec<7At<0.014 sec a zero exponent is calculated and thusyere compared numerically for six parameters, namely, the
these values can be considered as suitable for the propgidius of the sphere, the propagation time, the maximum
choice of rAt. number of points, the sampling rate, the embedding dimen-
sion, and the time delay, for three different time series. The
comparison showed that the Eckmaanal. algorithms is
more independent of the choice efthan the Sano and
Sawada algorithm, for the noise-free signal obtained from
In the present work we presented a brief description of théhe Lorenz equations. The same conclusion can be drawn for
Sano and Sawada and Eckmaatral. algorithms for the cal- the smooth experimental Signal 2; the Eckmanral. algo-
culation of the Lyapunov spectrum from experimental sig-rithm shows a plateau of some extent bigger than the one of
nals and we compared analytically and numerically the twdhe Sano and Sawada algorithm and it calculates more accu-
algorithms. We used a uniform formulation of the algorithmsrately the zero exponent. Both algorithms deviate from the
which allowed us to prove that the calculated value of thetrue values of the exponents for small valueg af the case
largest exponent is identical for both algorithms but there iof the noisy experimental signals. In order to avoid small
a mismatch of the rest of the spectrum. The above result washoices ofe a shell rather than a sphere can be used for the
confirmed with numerical calculations of the Lyapunov specformation of the small vectorg; [22]. A similar effect is not
trum for one time series obtained from the Lorenz equation®bserved on the noise-free Lorenz signal, where the best re-
and two time series obtained experimentally from the elecsults are obtain for small. The linear approximation of the
trochemical system Fe-A2H,SO;. operatorA(t) is expected to be accurate dfis selected as
The calculation of the Lyapunov spectrum by using thedescribed above, even though a nonlinear approximation
Sano and Sawada or the Eckmaetral. algorithm is based would improve the determination &(t) [17,18§].
on some assumptions which introduce a number of ambigu- The second algorithm parameter the propagation tigne
ities for the implementation of the algorithms. It is always has a strong effect on the Lyapunov spectrum for both algo-
assumed that the operatbf(x) is a continuous function in rithms. In order to utilize the linear-least-squares approxima-
the region defined by the propagation time, even for evergion of A(t), t, must not be large. On the other hand, ex-
stiff experimental signals like the one presented in Fi@p).1 tremely small propagation time will lead to the false
The general solution of Eq11) is expected to have the form calculation of the unreasonably large Lyapunov exponents.
of Eq. (12) in the region of continuity of the operat@f(x).  This effect is observed for both algorithms, especially when
It is obvious that this assumption is difficult to be verified the Lyapunov spectrum of the stiff Signal 1 is calculated.
numerically. The situation can be less dramatic if the smaller sampling
Another assumption which cannot be verified is that therate is used, where this is permissible. In the case of the
radiuse of the small sphere is considered as infinitesimallysmooth Signal 2, where the sampling rate is four times less
small. It is well known that we expect the divergence ofof the sampling rate of Signal 1, smaller propagation time
nearby orbits to be exponential, if these are initially sepa-can be used and a larger plateau region can be located. Un-
rated only infinitesimally. Although, very oftenis taken to  fortunately, a smaller sampling rate cannot be used for the
be quite large in order to avoid interference of the noise oftiff signals which contain sharp peaks with small peak-to-
the system. peak time intervals because the choice of a smaller sampling
The linearity of Eq.(29) is another crucial assumption. rate will cause a bad quality signal from which any calcula-

VII. DISCUSSION OF THE RESULTS
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tion would be nonsense. We expect results of poor accuracyll spurious exponents lie between the largest and the small-
from both algorithms, when a very stiff signal is recorded,est exponent and so the signal can be characterized safely.
which is necessary with a large sampling rate. From the re- Even though in principle the time delaycan be chosen
sults we may conclude that the propagation time is proporarbltrarlly, its choice is very crucial when dealing with ex-

tional to the dominant frequency of the aperiodic signal. perimental signals of finite duration and low precision. The

In this point we must notice that the accuracy of the re_value of 7 can be chosen somehow empirically by varying its

its d ds al th ical techni db tvalue and searching for a plateau at the spectrum, a zero
sults depends aiso on the numerical tlechniques used by I%?(ponent and a negative divergence of the vector field. In the

glgonthms. The Sano and Sawada algorthm. seems t0 b€ e of the Lorenz signal, the propedetermined by this
independent of the type of the orthonormalization used, thaay is very close to the first zero crossing of the autocorre-
is, the utilization of the Gramm-Schmidt or the Householdenation function.

transformation procedure. In contrast, the results of the Eck- We should notice the large difference of the values of the
mannet al. algorithm depend strongly on the choice of the Lyapunov exponents of the two experimental signals by
orthonormalization procedure. In principal, both algorithmsvarying the bifurcation parameteRs (ohmic resistandeand
utilize an orthonormalization procedure; the Sano andE (applied potentigl This is due to the fact that the
Sawada algorithm in order to orthonormalize the vec&ﬁPs Lyapunov exponents are discontinuous functions of the bi-
and the Eckmanret al. algorithm in order to construct the furcation parameters and thus we do not expect a continuous
orthogonal matrixQ; . For all the results presented in Secs. variation of the values of the exponents by varying the bifur-
IV, V, and VI, as far as it concerns the Eckmaetal. algo- ~ cation parameterist]. .

rithm, the Householder transformation was used. For the We observe that the Eckmaret al. algorithm better ap-
sake of comparison in Fig. 16 we present the same calculdroximates the zero and negative exponents in most cases

tions as the ones presented in Figa)7by using the Gramm- and it seems more promising for the accurate determination

Schmidt orthonormalization procedure. It is obvious that theOf the whole spectrum. In general, the Eckmaatral. algo-

. - : rithm gives stable Lyapunov exponents for a larger region of
Eckmannet al. algorithm gives very inaccurate results when X ,
this orthonormalization procedure is used. the parameters and thus more easily determines the

Even though a very large number of data points is aS!_yapunov'spectrum. Its sensitivity to the 'choice of the or-
. thonormalization procedure and the requirement of a large
. : \émbedding dimension is balanced by the more accurate de-
spectrum, by decreasing the number of points for smoothy mination of the Lyapunov spectrum. On the other hand,
signals the Lyapunov spectrum remains fairly constant evefhe Sano and Sawada algorithm is easy to implement and can
for values less than 10 000 points. In contrast, the Lyapuno¥etermine the Lyapunov exponents for smaller values of the
spectrum of stiff signals seems more sensitive to the decreaggnpedding dimension.
of Nipax- Thus, only forN,,,,=80 000 points, the Lyapunov  As a conclusion we may say that even though the central
spectrum seems to converge to the true values. idea of the Sano and Sawada and the Eckmetrail. algo-

The number of data poinfd,,, must be large by means rithms is the same, the later is superior due to the numerical
of the maximum possible total sampling time and not due tanethodology used and it can determine the whole spectrum
a large sampling ratat %, In the case of a smooth signal the more accurately. If we are interested only for the character-
sampling rate must have a moderate value; not too small iization of the nonlinear time series, any of the two algo-
order for the small vector, to lie in different orbits and not  rithms can be used to calculate the largest Lyapunov expo-
too large in order to capture all the features of the systemment. The calculated Lyapunov exponents strongly depend
This rule is difficult to apply in the case of the stiff signals. on the algorithm, signal and reconstruction parameters and
Stiff signals have to be recorded with a very small samplinghe results are expected to be accurate only in a parameter
rate At ! and thus the Lyapunov spectrum is suspected to beegion, often narrow, which must be chosen carefully by try-
overestimated or even inaccurate, indifferently of the algoing to fulfill the basic assumptions and performing a variety
rithm used. of numerical experiments. The stiffness of the signal is of a

It must be pointed out that the Eckmaenal. algorithm is  great importance and results concerning this kind of signals
more sensitive to the selection of. For smallm the accu- must be interpreted thoughtfully.
racy of the results is rather poor and a larger embedding Future work on the determination of the Lyapunov spec-
dimension is necessary. On the other hand, the Sano andim from experimental signals must aim not only to the
Sawada algorithm converges even for snmallThe birth of  improvement of the accuracy of the numerical techniques
spurious exponents occurs for both algorithms. and procedures of the algorithms but also to the introduction

A great deal of the literature is devoted to the existence obf quantitative criteria which will allow an easy, proper, and
spurious exponents among the true ones when a calculatiavena priori choice of the six algorithm parameters. A con-
is done directly from the time seri¢$9,31,33. Some tech- venient choice of the algorithm parameters will permit the
niques are already proposed either for the calculation of these of the two algorithms as common scientific tools for the
minimum embedding dimension or for the direct determina-characterization and study of nonlinear experimental signals.
tion of spurious exponeni$,33|. Fortunately, spurious ex-
ponents often have values between the zero exponent and the
most negative one. It is possible that positive spurious expo-
nents which are twice or thrice that of the real positive ex-
ponent will be born for increasing values of. We must This work was partially supported under P.E.N.E.D. 91/
notice that when the signal is not noise free the birth ofED/780 of the Greek General Secretariat of Research and
double or triple exponents does not take place. In this cas€echnology.
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